scholarly journals A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ terminus of RNAs transcribed by T7 RNA polymerase

RNA ◽  
1999 ◽  
Vol 5 (9) ◽  
pp. 1268-1272 ◽  
Author(s):  
C. KAO ◽  
M. ZHENG ◽  
S. RÜDISSER
Author(s):  
Ali H. Rabbad ◽  
Fisayo A. Olotu ◽  
Mahmoud E. Soliman

Background: The ability of Pseudouridimycin (PUM) to occupy the nucleotide addition site of bacterial RNA Polymerase (RNAP) underlies its inhibitory potency as previously reported. PUM has gained high research interest as a broad-spectrum nucleoside analog that has demonstrated exciting potentials in treating drug-resistant bacterial infections. Objective: Herein, we identified, for the first time, a novel complementary mechanism by which PUM elicits its inhibitory effects on bacterial RNAP. Methods: The dynamic binding behavior of PUM to bacterial RNAP was studied using various dynamic analyses approaches. Results and Discussion: Findings revealed that in addition to occupying the nucleotide addition site, PUM also interrupts the unimpeded entry and exit of DNA by reducing the mechanistic extension of the RNAP cleft and perturbing the primary conformations of the switch regions. Moreover, PUM binding reduced the distances between key residues in the β and β’ subunits that extend to accommodate the DNA. Conclusion: This study’s findings present structural insights that would contribute to the structure-based design of potent and selective PUM inhibitors.


1987 ◽  
Vol 262 (9) ◽  
pp. 3940-3943
Author(s):  
M. Yamagishi ◽  
J.R. Cole ◽  
M. Nomura ◽  
F.W. Studier ◽  
J.J. Dunn

2007 ◽  
Vol 370 (2) ◽  
pp. 256-268 ◽  
Author(s):  
William P. Kennedy ◽  
Jamila R. Momand ◽  
Y. Whitney Yin

1999 ◽  
Vol 42 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Yong Li ◽  
Jianfeng Chen ◽  
Enduo Wang ◽  
Yinglai Wang

Sign in / Sign up

Export Citation Format

Share Document