scholarly journals Imaging of Vascular Smooth Muscle Cells with Soft X-Ray Spectromicroscopy

2011 ◽  
Vol 17 (6) ◽  
pp. 991-1001 ◽  
Author(s):  
Julia Sedlmair ◽  
Sophie-Charlotte Gleber ◽  
Semra Öztürk Mert ◽  
Michael Bertilson ◽  
Olov von Hofsten ◽  
...  

AbstractUsing X-ray microscopy and spectromicroscopy, vascular smooth muscle cells (VSMCs) were imaged, prepared without using additional embedding material or staining, but by applying simple, noncryo fixation techniques. The cells were imaged with a compact source transmission X-ray microscope and a scanning transmission X-ray microscope (STXM). With the STXM, spectromicroscopy was performed at the C K-edge and the Ca LIII,II-edges. VSMCs were chosen because of their high amount of actin stress fibers, so that the actin cytoskeleton should be visible. Other parts of the cell, such as the nucleus and organelles, were also identified from the micrographs. Both in the spectra and the images, the effects of the different preparation procedures were observable. Furthermore, Ca hotspots were detected and their density is determined.

2018 ◽  
Vol 19 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Liqin Yuan ◽  
Chang Shu ◽  
Xiao Zhou ◽  
Jiehua Li ◽  
Lunchang Wang ◽  
...  

Purpose: To study the effect of x-ray radiotherapy on vascular smooth muscle cells (VSMCs) and elucidate the mechanisms in preventing neointimal hyperplasia of prosthetic vascular grafts. Materials and methods: In model I, twelve mongrel dogs underwent revascularization with prosthetic grafts and half the dogs underwent irradiation of the grafts at 28 Gy. In model II, human VSMCs (hVSMCs) were maintained and divided into six groups to which external radiation was applied at six different doses: 0 Gy, 2 Gy, 8 Gy, 16 Gy, 24 Gy and 30 Gy. In both models, specimens were harvested and examined by using morphological, immunological, cellular and molecular methods. Results: After irradiation, the neointima thickness was significantly lower in irradiated groups (p≤0.01). The radiotherapy could up-regulate p27kip1, and down-regulate proliferating cell nuclear antigen (PCNA) and S phase kinase associated protein 2 (Skp2). X-ray irradiation inhibits the proliferation of hVSMCs via acting on G1/S phase of cell cycle. The apoptosis of hVSMCs increased significantly with dose and time. The expression of PCNA and Skp2 were decreased after a first increasing trend with dose, but had a significant negative correlation with time. The expression of p27kip1 had a significant positive correlation with dose and time. Conclusions: Postoperative external fractionated irradiation after prosthetic vessel replacement of the abdominal aorta suppressed the development of hyperplasia in the graft neointima in the short term. There was a prominent time- and dose-dependent inhibition of VSMC proliferation by radiation when it was administered.


Sign in / Sign up

Export Citation Format

Share Document