scholarly journals Machine Learning-based Crystal Structure Prediction for X-Ray Microdiffraction

2018 ◽  
Vol 24 (S2) ◽  
pp. 144-145 ◽  
Author(s):  
Yuta Suzuki ◽  
Hideitsu Hino ◽  
Yasuo Takeichi ◽  
Takafumi Hawai ◽  
Masato Kotsugi ◽  
...  
2005 ◽  
Vol 38 (6) ◽  
pp. 861-866 ◽  
Author(s):  
Detlef Walter Maria Hofmann ◽  
Ludmila Kuleshova

A new similarity index for automated comparison of powder diagrams is proposed. In contrast to traditionally used similarity indices, the proposed method is valid in cases of large deviations in the cell constants. The refinement according to this index closes the gap between crystal structure prediction and automated crystal structure determination. The opportunities of the new procedure have been demonstrated by crystal structure solution of un-indexed powder diagrams of some organic pigments (PY111, PR181 and Me-PR170).


2004 ◽  
Vol 126 (22) ◽  
pp. 7071-7081 ◽  
Author(s):  
Maryjane Tremayne ◽  
Leanne Grice ◽  
James C. Pyatt ◽  
Colin C. Seaton ◽  
Benson M. Kariuki ◽  
...  

2018 ◽  
Vol 211 ◽  
pp. 477-491 ◽  
Author(s):  
Melissa Tan ◽  
Alexander G. Shtukenberg ◽  
Shengcai Zhu ◽  
Wenqian Xu ◽  
Eric Dooryhee ◽  
...  

X-ray powder diffraction and crystal structure prediction algorithms are used in synergy to establish the crystal structure of the eighth polymorph of ROY, form R05.


2007 ◽  
Vol 40 (1) ◽  
pp. 105-114 ◽  
Author(s):  
N. Panina ◽  
F. J. J. Leusen ◽  
F. F. B. J. Janssen ◽  
P. Verwer ◽  
H. Meekes ◽  
...  

The structures of the α, β and γ polymorphs of quinacridone (Pigment Violet 19) were predicted usingPolymorph Predictorsoftware in combination with X-ray powder diffraction patterns of limited quality. After generation and energy minimization of the possible structures, their powder patterns were compared with the experimental ones. On this basis, candidate structures for the polymorphs were chosen from the list of all structures. Rietveld refinement was used to validate the choice of structures. The predicted structure of the γ polymorph is in accordance with the experimental structure published previously. Three possible structures for the β polymorph are proposed on the basis of X-ray powder patterns comparison. It is shown that the α structure in the Cambridge Structural Database is likely to be in error, and a new α structure is proposed. The present work demonstrates a method to obtain crystal structures of industrially important pigments when only a low-quality X-ray powder diffraction pattern is available.


2021 ◽  
Vol 1 (1) ◽  
pp. 87-97
Author(s):  
Tomoki Yamashita ◽  
Shinichi Kanehira ◽  
Nobuya Sato ◽  
Hiori Kino ◽  
Kei Terayama ◽  
...  

2019 ◽  
Vol 19 (11) ◽  
pp. 6058-6066 ◽  
Author(s):  
Doris E. Braun ◽  
Arianna Rivalta ◽  
Andrea Giunchi ◽  
Natalia Bedoya-Martinez ◽  
Benedikt Schrode ◽  
...  

2015 ◽  
Vol 48 (2) ◽  
pp. 550-557 ◽  
Author(s):  
Claudia Graiff ◽  
Daniele Pontiroli ◽  
Laura Bergamonti ◽  
Chiara Cavallari ◽  
Pier Paolo Lottici ◽  
...  

The crystal structure ofN,N′-methylenebisacrylamide was determined through the geometry optimization of the molecular unit with density functional theory and conformational analysis, and then through the calculation of the packingviaa crystal structure prediction protocol, based on lattice energy minimization. All the calculated structures were ranked, comparing their powder pattern with the laboratory low-quality X-ray diffraction data. Rietveld refinement of the best three proposed structures allowed the most probable crystal arrangement of the molecules to be obtained. This approach was essential for disentangling the twinning problems affecting the single-crystal X-ray diffraction data, collected on samples obtainedviarecrystallization of powder, which definitely confirmed the predicted model. It was found thatN,N′-methylenebisacrylamide shows a monoclinic structure in the space groupC2/c, with lattice parametersa= 17.822 (12),b= 4.850 (3),c= 19.783 (14) Å, β = 102.370 (9)°,V= 1670 (2) Å3. Two strong interactions between the amide protons and the carbonyl groups of neighbouring molecules were found along thebaxis, determining the crystal growth in the form of wires in this direction. This work provides a further example of how computational methods may help to investigate low-quality molecular crystals with standard diffraction techniques.


2019 ◽  
Vol 3 (3) ◽  
Author(s):  
Maximilian Amsler ◽  
Logan Ward ◽  
Vinay I. Hegde ◽  
Maarten G. Goesten ◽  
Xia Yi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document