scholarly journals Bifurcation of positive solutions for a Neumann boundary value problem

2001 ◽  
Vol 42 (3) ◽  
pp. 324-340 ◽  
Author(s):  
Laurence Mays ◽  
John Norbury

AbstractAnalytical, approximate and numerical methods are used to study the Neumann boundary value problem− uxx + q2u = u2(1 + sin x), for 0 < x < π,subject to ux(0) = 0, ux(π) = 0,for q2 ∈ (0,∞). Asymptotic approximations to (1) are found for q2 small and q2 large. In the case where q2 is large u(x) ≈ 3qδ(x − π/2). When q2 = 0 we show that the only possible solution is u ≡ 0. However, there exist non-zero solutions for q2 > 0 as well as the trivial solution u ≡ 0. To O(q4) in the q2 small case u(x) = q2π(π + 2)−1, so that bifurcation occurs about the trivial solution branch u ≡ 0 at the first eigenvalue λ0 = 0 and in the direction of the first eigenfunction ξ0 = constant.We obtain a bifurcation diagram for (1), which confirms that there exists a positive solution for q2 ∈ (0, 10). Symmetry-breaking bifurcations and blow-up behaviour occur on certain regions of the diagram. We show that all non-trival solutions to the problem must be positive.The formal outer solution u = q2û appears to satisfy û = û2(1 + sin x), so that û ≡ 0 and û = (1 + sin x)−1 are possible limit solutions. However, in the non-trivial case ûx(0) = −1 and ûx(π) = 1; this means that û does not satisfy the boundary conditions required for a solution of (1). This behaviour usually implies that for q2 large a boundary layer exists near x = 0 (and one near x = π), which corrects the slope. However, we find no evidence for such a solution structure, and only find perturbations in the direction of a delta function about u ≡ 0. We show using the monotone convergence theorem for quadratic forms that the inverse of the operator on the left-hand side of (1) is strongly convergent as q2 → ∞. We show that strong convergence of the operator is sufficient to stop outer-layer behaviour occurring.

2012 ◽  
Vol 86 (2) ◽  
pp. 244-253 ◽  
Author(s):  
YANG-WEN ZHANG ◽  
HONG-XU LI

AbstractIn this paper, we consider the Neumann boundary value problem with a parameter λ∈(0,∞): By using fixed point theorems in a cone, we obtain some existence, multiplicity and nonexistence results for positive solutions in terms of different values of λ. We also prove an existence and uniqueness theorem and show the continuous dependence of solutions on the parameter λ.


2021 ◽  
pp. 1-35
Author(s):  
Nakao Hayashi ◽  
Elena I. Kaikina ◽  
Pavel I. Naumkin ◽  
Takayoshi Ogawa

We study the nonlinear Neumann boundary value problem for semilinear heat equation ∂ t u − Δ u = λ | u | p , t > 0 , x ∈ R + n , u ( 0 , x ) = ε u 0 ( x ) , x ∈ R + n , − ∂ x u ( t , x ′ , 0 ) = γ | u | q ( t , x ′ , 0 ) , t > 0 , x ′ ∈ R n − 1 where p = 1 + 2 n , q = 1 + 1 n and ε > 0 is small enough. We investigate the life span of solutions for λ , γ > 0. Also we study the global in time existence and large time asymptotic behavior of solutions in the case of λ , γ < 0 and ∫ R + n u 0 ( x ) d x > 0.


Author(s):  
Rainer Kress

SynopsisA Neumann boundary value problem for the equation rot μ − λμ = u is considered. The approach is by an integral equation method based on Cauchy's integral formula for generalized harmonic vector fields. Results on existence and uniqueness are obtained in terms of the familiar Fredholm alternative.


Sign in / Sign up

Export Citation Format

Share Document