THE ALTERNATIVE KIRCHHOFF APPROXIMATION IN ELASTODYNAMICS WITH APPLICATIONS IN ULTRASONIC NONDESTRUCTIVE TESTING

2020 ◽  
pp. 1-17 ◽  
Author(s):  
L. J. FRADKIN ◽  
A. K. DJAKOU ◽  
C. PRIOR ◽  
M. DARMON ◽  
S. CHATILLON ◽  
...  

The Kirchhoff approximation is widely used to describe the scatter of elastodynamic waves. It simulates the scattered field as the convolution of the free-space Green’s tensor with the geometrical elastodynamics approximation to the total field on the scatterer surface and, therefore, cannot be used to describe nongeometrical phenomena, such as head waves. The aim of this paper is to demonstrate that an alternative approximation, the convolution of the far-field asymptotics of the Lamb’s Green’s tensor with incident surface tractions, has no such limitation. This is done by simulating the scatter of a critical Gaussian beam of transverse motions from an infinite plane. The results are of interest in ultrasonic nondestructive testing.

2021 ◽  
Vol 62 ◽  
pp. 406-422
Author(s):  
Larissa Fradkin ◽  
Audrey Kamta Djakou ◽  
Chris Prior ◽  
Michel Darmon ◽  
Sylvain Chatillon ◽  
...  

The Kirchhoff approximation is widely used to describe the scatter of elastodynamic waves. It simulates the scattered field as the convolution of the free-space Green’s tensor with the geometrical elastodynamics approximation to the total field on the scatterer surface and, therefore, cannot be used to describe nongeometrical phenomena, such as head waves. The aim of this paper is to demonstrate that an alternative approximation, the convolution of the far-field asymptotics of the Lamb’s Green’s tensor with incident surface tractions, has no such limitation. This is done by simulating the scatter of a critical Gaussian beam of transverse motions from an infinite plane. The results are of interest in ultrasonic nondestructive testing. doi:10.1017/S1446181120000036


2020 ◽  
Vol 17 (9) ◽  
pp. 1498-1502 ◽  
Author(s):  
Runren Zhang ◽  
Zhenguan Wu ◽  
Qingtao Sun ◽  
Mingwei Zhuang ◽  
Qiang-Ming Cai ◽  
...  

2014 ◽  
Vol 926-930 ◽  
pp. 2777-2780
Author(s):  
Hong Yuan Fang ◽  
Jian Li ◽  
Jia Li

The second-order Lobatto IIIA-IIIB symplectic partitioned RungeKutta (SPRK) method, combining with the first-order Mur absorbing boundary condition, is developed for the simulation of ground penetrating radar wave propagation in layered pavement structure. For 2-dimetional case, a significant advantage of this method is that only two functions need to be calculated at each time step. The total-field/scattered-field technique is used for plane wave excitation. Numerical examples are presented to verify the accuracy and efficiency of the proposed algorithm. The results illustrate that the reflected signal calculated by the SPRK method is in good agreement with that obtained using the finite difference time domain (FDTD) scheme, but the CPU time consumed by proposed algorithm is reduce about 20% of the FDTD scheme. In addition, an actual field test is conducted to evaluate the further performance of the SPRK method. It is found that the simulated waveform fits well with the measured signal in many aspects, especially in the peak amplitude and time delay.


Sign in / Sign up

Export Citation Format

Share Document