Memory-Efficient 3-D LWD Solver With the Flipped Total Field/Scattered Field-Based DGFD Method

2020 ◽  
Vol 17 (9) ◽  
pp. 1498-1502 ◽  
Author(s):  
Runren Zhang ◽  
Zhenguan Wu ◽  
Qingtao Sun ◽  
Mingwei Zhuang ◽  
Qiang-Ming Cai ◽  
...  
2014 ◽  
Vol 926-930 ◽  
pp. 2777-2780
Author(s):  
Hong Yuan Fang ◽  
Jian Li ◽  
Jia Li

The second-order Lobatto IIIA-IIIB symplectic partitioned RungeKutta (SPRK) method, combining with the first-order Mur absorbing boundary condition, is developed for the simulation of ground penetrating radar wave propagation in layered pavement structure. For 2-dimetional case, a significant advantage of this method is that only two functions need to be calculated at each time step. The total-field/scattered-field technique is used for plane wave excitation. Numerical examples are presented to verify the accuracy and efficiency of the proposed algorithm. The results illustrate that the reflected signal calculated by the SPRK method is in good agreement with that obtained using the finite difference time domain (FDTD) scheme, but the CPU time consumed by proposed algorithm is reduce about 20% of the FDTD scheme. In addition, an actual field test is conducted to evaluate the further performance of the SPRK method. It is found that the simulated waveform fits well with the measured signal in many aspects, especially in the peak amplitude and time delay.


1969 ◽  
Vol 47 (11) ◽  
pp. 1177-1184 ◽  
Author(s):  
V. H. Weston ◽  
W. M. Boerner

It is shown that the total field produced by a plane wave incident upon a scattering body can be expressed at all points in space as the sum of the incident field and the Fourier transform of a quantity which is related to the scattering matrix. For points exterior to the minimum convex surface enclosing the body, the scattered field is reducible to a plane-wave representation which requires knowledge of the bistatic scattered field, for a fixed frequency and direction of incidence. It is shown that for certain cases, the resulting expression for the bistatic scattered field may be employed in interior portions of the minimum convex shape (including the body) in which case it represents the field arising from a set of equivalent sources. Alternative representations are also given. A technique is presented which yields the surface of a perfectly-conducting piecewise-smooth body from knowledge of the local total field. To achieve uniqueness, the technique must be applied for at least two different frequencies. Numerical results are presented which illustrate the technique.


2020 ◽  
Vol 68 (8) ◽  
pp. 6214-6225 ◽  
Author(s):  
Hailiang Wei ◽  
Yanming Liu ◽  
Lei Shi ◽  
Bo Yao ◽  
Xiaoping Li

Sign in / Sign up

Export Citation Format

Share Document