scholarly journals Subgroups of finitely presented metabelian groups

1973 ◽  
Vol 16 (1) ◽  
pp. 98-110 ◽  
Author(s):  
Gilbert Baumslag

In 1961 Graham Higman [1] proved that a finitely generated group is a subgroup of a finitely presented group if, and only if, it is recursively presented. Therefore a finitely generated metabelian group can be embedded in a finitely presented group.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wenhao Wang

Abstract In this paper, we compute an upper bound for the Dehn function of a finitely presented metabelian group. In addition, we prove that the same upper bound works for the relative Dehn function of a finitely generated metabelian group. We also show that every wreath product of a free abelian group of finite rank with a finitely generated abelian group can be embedded into a metabelian group with exponential Dehn function.


1998 ◽  
Vol 08 (01) ◽  
pp. 23-34 ◽  
Author(s):  
Susan Garner Garille ◽  
John Meier

Let G be a finitely generated group. The Bieri–Neumann–Strebel invariant Σ1(G) of G determines, among other things, the distribution of finitely generated subgroups N◃G with G/N abelian. This invariant can be quite difficult to compute. Given a finite presentation 〈S:R〉 for G, there is an algorithm, introduced by Brown and extended by Bieri and Strebel, which determines a space Σ(R) that is always contained in, and is sometimes equal to, Σ1(G). We refine this algorithm to one which involves the local structure of the universal cover of the standard 2-complex of a given presentation. Let Ψ(R) denote the space determined by this algorithm. We show that Σ(R) ⊆ Ψ ⊆ Σ1(G) for any finitely presented group G, and if G admits a staggered presentation, then Ψ = Σ1(G). By casting this algorithm in terms of connectivity properties of graphs, it is shown to be computationally feasible.


1992 ◽  
Vol 45 (3) ◽  
pp. 513-520 ◽  
Author(s):  
Ron Hirshon ◽  
David Meier

We prove that given a finitely generated group G with a homomorphism of G onto G × H, H non-trivial, or a finitely generated group G with a homomorphism of G onto G × G, we can always find normal subgroups N ≠ G such that G/N ≅ G/N × H or G/N ≅ G/N × G/N respectively. We also show that given a finitely presented non-Hopfian group U and a homomorphism φ of U onto U, which is not an isomorphism, we can always find a finitely presented group H ⊇ U and a finitely generated free group F such that φ induces a homomorphism of U * F onto (U * F) × H. Together with the results above this allows the construction of many examples of finitely generated groups G with G ≅ G × H where H is finitely presented. A finitely presented group G with a homomorphism of G onto G × G was first constructed by Baumslag and Miller. We use a slight generalisation of their method to obtain more examples of such groups.


1976 ◽  
Vol 22 (4) ◽  
pp. 501-508 ◽  
Author(s):  
James Boler

AbstractLet G be a finitely generated metabelian group whose derived group G′ has finite rank. It is shown that G can be embedded in a finitely presented metabelian group H with H′ of finite rank.


1974 ◽  
Vol 18 (1) ◽  
pp. 41-53 ◽  
Author(s):  
William W. Boone ◽  
Graham Higman

The following theorem is the focal point of the present paper. It stipulates an algebraic condition equivalent, in any finitely generated group, to the solubility of the word problem.THEOREM I. A necessary and sufficient condition that a finitely generated group G have a soluble word problem is that there exist a simple group H, and a finitely presented group K, such that G is a subgroup of H, and H is a subgroup of K.


2016 ◽  
Vol 28 (3) ◽  
pp. 457-471 ◽  
Author(s):  
ANDRÉ NIES ◽  
ANDREA SORBI

(1) There is a finitely presented group with a word problem which is a uniformly effectively inseparable equivalence relation. (2) There is a finitely generated group of computable permutations with a word problem which is a universal co-computably enumerable equivalence relation. (3) Each c.e. truth-table degree contains the word problem of a finitely generated group of computable permutations.


1971 ◽  
Vol 5 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Gilbert Baumslag

We exhibit a 3-generator metabelian group which is not finitely related but has a trivial multiplicator.1. The purpose of this note is to establish the exitense of a finitely generated group which is not finitely related, but whose multiplecator is finitely generated. This settles negatively a question whichb has been open for a few years (it was first brought to my attention by Michel Kervaire and Joan Landman Dyer in 1964, but I believe it is somewhat older). The group is given in the follwing theorem.


2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Khadijeh Alibabaei

AbstractWe show that the wreath product of a finitely generated abelian group with a polycyclic group is a LERF group. This theorem yields as a corollary that finitely generated free metabelian groups are LERF, a result due to Coulbois. We also show that a free solvable group of class 3 and rank at least 2 does not contain a strictly ascending HNN-extension of a finitely generated group. Since such groups are known not to be LERF, this settles, in the negative, a question of J. O. Button.


2007 ◽  
Vol 49 (1) ◽  
pp. 23-28
Author(s):  
JON CORSON ◽  
DOHYOUNG RYANG

Abstract.A finitely generated group acting properly, cocompactly, and by isometries on an Lδ-metric space is finitely presented and has a sub-cubic isoperimetric function.


Sign in / Sign up

Export Citation Format

Share Document