scholarly journals Calibrating word problems of groups via the complexity of equivalence relations

2016 ◽  
Vol 28 (3) ◽  
pp. 457-471 ◽  
Author(s):  
ANDRÉ NIES ◽  
ANDREA SORBI

(1) There is a finitely presented group with a word problem which is a uniformly effectively inseparable equivalence relation. (2) There is a finitely generated group of computable permutations with a word problem which is a universal co-computably enumerable equivalence relation. (3) Each c.e. truth-table degree contains the word problem of a finitely generated group of computable permutations.

1974 ◽  
Vol 18 (1) ◽  
pp. 41-53 ◽  
Author(s):  
William W. Boone ◽  
Graham Higman

The following theorem is the focal point of the present paper. It stipulates an algebraic condition equivalent, in any finitely generated group, to the solubility of the word problem.THEOREM I. A necessary and sufficient condition that a finitely generated group G have a soluble word problem is that there exist a simple group H, and a finitely presented group K, such that G is a subgroup of H, and H is a subgroup of K.


1998 ◽  
Vol 08 (01) ◽  
pp. 23-34 ◽  
Author(s):  
Susan Garner Garille ◽  
John Meier

Let G be a finitely generated group. The Bieri–Neumann–Strebel invariant Σ1(G) of G determines, among other things, the distribution of finitely generated subgroups N◃G with G/N abelian. This invariant can be quite difficult to compute. Given a finite presentation 〈S:R〉 for G, there is an algorithm, introduced by Brown and extended by Bieri and Strebel, which determines a space Σ(R) that is always contained in, and is sometimes equal to, Σ1(G). We refine this algorithm to one which involves the local structure of the universal cover of the standard 2-complex of a given presentation. Let Ψ(R) denote the space determined by this algorithm. We show that Σ(R) ⊆ Ψ ⊆ Σ1(G) for any finitely presented group G, and if G admits a staggered presentation, then Ψ = Σ1(G). By casting this algorithm in terms of connectivity properties of graphs, it is shown to be computationally feasible.


1992 ◽  
Vol 45 (3) ◽  
pp. 513-520 ◽  
Author(s):  
Ron Hirshon ◽  
David Meier

We prove that given a finitely generated group G with a homomorphism of G onto G × H, H non-trivial, or a finitely generated group G with a homomorphism of G onto G × G, we can always find normal subgroups N ≠ G such that G/N ≅ G/N × H or G/N ≅ G/N × G/N respectively. We also show that given a finitely presented non-Hopfian group U and a homomorphism φ of U onto U, which is not an isomorphism, we can always find a finitely presented group H ⊇ U and a finitely generated free group F such that φ induces a homomorphism of U * F onto (U * F) × H. Together with the results above this allows the construction of many examples of finitely generated groups G with G ≅ G × H where H is finitely presented. A finitely presented group G with a homomorphism of G onto G × G was first constructed by Baumslag and Miller. We use a slight generalisation of their method to obtain more examples of such groups.


1973 ◽  
Vol 8 (1) ◽  
pp. 27-60 ◽  
Author(s):  
R.W. Gatterdam

Finitely presented groups having word, problem solvable by functions in the relativized Grzegorczyk hierarchy, {En(A)| n ε N, A ⊂ N (N the natural numbers)} are studied. Basically the class E3 consists of the elementary functions of Kalmar and En+1 is obtained from En by unbounded recursion. The relativization En(A) is obtained by adjoining the characteristic function of A to the class En.It is shown that the Higman construction embedding, a finitely generated group with a recursively enumerable set of relations into a finitely presented group, preserves the computational level of the word problem with respect to the relativized Grzegorczyk hierarchy. As a corollary it is shown that for every n ≥ 4 and A ⊂ N recursively enumerable there exists a finitely presented group with word problem solvable at level En(A) but not En-1(A). In particular, there exist finitely presented groups with word problem solvable at level En but not En-1 for n ≥ 4, answering a question of Cannonito.


2009 ◽  
Vol 30 (2) ◽  
pp. 525-545 ◽  
Author(s):  
JOHN KITTRELL ◽  
TODOR TSANKOV

AbstractWe study full groups of countable, measure-preserving equivalence relations. Our main results include that they are all homeomorphic to the separable Hilbert space and that every homomorphism from an ergodic full group to a separable group is continuous. We also find bounds for the minimal number of topological generators (elements generating a dense subgroup) of full groups allowing us to distinguish between full groups of equivalence relations generated by free, ergodic actions of the free groups Fm and Fn if m and n are sufficiently far apart. We also show that an ergodic equivalence relation is generated by an action of a finitely generated group if an only if its full group is topologically finitely generated.


2006 ◽  
Vol 16 (01) ◽  
pp. 35-90 ◽  
Author(s):  
JEAN-CAMILLE BIRGET

We construct a finitely presented group with coNP-complete word problem, and a finitely generated simple group with coNP-complete word problem. These groups are represented as Thompson groups, hence as partial transformation groups of strings. The proof provides a simulation of combinational circuits by elements of the Thompson–Higman group G3,1.


1973 ◽  
Vol 16 (1) ◽  
pp. 98-110 ◽  
Author(s):  
Gilbert Baumslag

In 1961 Graham Higman [1] proved that a finitely generated group is a subgroup of a finitely presented group if, and only if, it is recursively presented. Therefore a finitely generated metabelian group can be embedded in a finitely presented group.


1968 ◽  
Vol 33 (2) ◽  
pp. 296-297
Author(s):  
J. C. Shepherdson

2018 ◽  
Vol 28 (07) ◽  
pp. 1299-1381
Author(s):  
W. Dison ◽  
E. Einstein ◽  
T. R. Riley

For a finitely presented group, the word problem asks for an algorithm which declares whether or not words on the generators represent the identity. The Dehn function is a complexity measure of a direct attack on the word problem by applying the defining relations. Dison and Riley showed that a “hydra phenomenon” gives rise to novel groups with extremely fast growing (Ackermannian) Dehn functions. Here, we show that nevertheless, there are efficient (polynomial time) solutions to the word problems of these groups. Our main innovation is a means of computing efficiently with enormous integers which are represented in compressed forms by strings of Ackermann functions.


Sign in / Sign up

Export Citation Format

Share Document