scholarly journals On a relation between injectors and certain complemented chief factors of finite soluble groups

1974 ◽  
Vol 17 (4) ◽  
pp. 385-388
Author(s):  
A. R. Makan

The Fitting class of finite soluble π-groups, where π is an arbitrary set of primes, has the property that each complement of an -avoided, complemented chief factor of any finite soluble group G contains an -injector of G. In other words, each -avoided, complemented chief factor of G is -complemented in the sense of Hartley (see [2]).

1970 ◽  
Vol 11 (4) ◽  
pp. 395-400 ◽  
Author(s):  
A. Makan

Let name be a class of finite soluble groups with the properties: (1) is a Fitting class (i.e. normal subgroup closed and normal product closed) and (2) if N ≦ H ≦ G ∈, N ⊲ G and H/N is a p-group for some prime p, then H ∈. Then is called a Fischer class. In any finite soluble group G, there exists a unique conjugacy class of maximal -subgroups V called the -injectors which have the property that for every N◃◃G, N ∩ V is a maximal -subgroup of N [3]. 3. By Lemma 1 (4) [7] an -injector V of G covers or avoids a chief factor of G. As in [7] we will call a chief factor -covered or -avoided according as V covers or avoids it and -complemented if it is complemented and each of its complements contains some -injector. Furthermore we will call a chief factor partially-complemented if it is complemented and at least one of its complements contains some -injector of G.


1972 ◽  
Vol 7 (1) ◽  
pp. 101-104 ◽  
Author(s):  
D.W. Barnes

Let G = H0 > H1 > … > Hr = 1 and G = K0 > K1 > … > Kr =1 be two chief series of the finite soluble group G. Suppose Mi complements Hi/Hi+1. Then Mi also complements precisely one factor Kj/Kj+1, of the second series, and this Kj/Kj+1 is G-isomorphic to Hi/Hi+1. It is shown that complements Mi can be chosen for the complemented factors Hi/Hi+1 of the first series in such a way that distinct Mi complement distinct factors of the second series, thus establishing a one-to-one correspondence between the complemented factors of the two series. It is also shown that there is a one-to-one correspondence between the factors of the two series (but not in general constructible in the above manner), such that corresponding factors are G-isomorphic and have the same number of complements.


1976 ◽  
Vol 19 (2) ◽  
pp. 213-216 ◽  
Author(s):  
M. J. Tomkinson

AbstractWe give a general method for constructing subgroups which either cover or avoid each chief factor of the finite soluble group G. A strongly pronorrnal subgroup V, a prefrattini subgroup W, an -normalizer D and intersections and products of V, W, and D axe all constructable. The constructable subgroups can be characterized by their cover-avoidance property and a permutability condition as in the results of J. D. Gillam [4] for prefrattini subgroups and -normalizers.


1966 ◽  
Vol 62 (3) ◽  
pp. 339-346 ◽  
Author(s):  
T. O. Hawkes

Introduction. Hall ((3), (4)) introduced the concept of a Sylow system and its normalizer into the theory of finite soluble groups. In (4) he showed that system normalizers may be characterized as those subgroups D of G minimal subject to the existence of a chain of subgroups from D up to G in which each subgroup is maximal and non-normal in the next; he also showed that a system normalizer covers all the central chief factors and avoids all the eccentric chief factors of G (for definitions of covering and avoidance, and an account of their elementary properties), the reader is referred to Taunt ((5)). This note arises out of an investigation into the question to what extent this covering/ avoidance property characterizes system normalizers; it provides a partial answer by means of two elementary counter-examples given in section 3 which seem to indicate that the property ceases to characterize system normalizers as soon as the ‘non-commutativity’ of the group is increased beyond a certain threshold. For the sake of completeness we include proofs in Theorems 1 and 2 of generalizations of two known results communicated to me by Dr Taunt and which as far as we know have not been published elsewhere. Theorem 1 shows the covering/avoidance property to be characteristic for the class of soluble groups with self-normalizing system normalizers introduced by Carter in (1), while Theorem 2 shows the same is true for A -groups (soluble groups with Abelian Sylow subgroups investigated by Taunt in (5)).


1973 ◽  
Vol 25 (4) ◽  
pp. 862-869 ◽  
Author(s):  
A. R. Makan

Various characteristic conjugacy classes of subgroups having covering/avoidance properties with respect to chief factors have recently played a major role in the study of finite soluble groups. Apart from the subgroups which are now called Hall subgroups, P. Hall [7] also considered the system normalizers of a finite soluble group and showed that these form a characteristic conjugacy class, cover the central chief factors and avoid the rest. The system normalizers were later shown by Carter and Hawkes [1] to be the simplest example of a wealth of characteristic conjugacy classes of subgroups of finite soluble groups which arise naturally as a consequence of the theory of formations.


1991 ◽  
Vol 44 (1) ◽  
pp. 19-31 ◽  
Author(s):  
R.A. Bryce ◽  
V. Fedri ◽  
L. Serena

We prove that, in a finite soluble group, all of whose Sylow normalisers are super-soluble, the Fitting length is at most 2m + 2, where pm is the highest power of the smallest prime p dividing |G/Gs| here Gs is the supersoluble residual of G. The bound 2m + 2 is best possible. However under certain structural constraints on G/GS, typical of the small examples one makes by way of experimentation, the bound is sharply reduced. More precisely let p be the smallest, and r the largest, prime dividing the order of a group G in the class under consideration. If a Sylow p–subgroup of G/GS acts faithfully on every r-chief factor of G/GS, then G has Fitting length at most 3.


1975 ◽  
Vol 27 (4) ◽  
pp. 837-851 ◽  
Author(s):  
M. J. Tomkinson

W. Gaschutz [5] introduced a conjugacy class of subgroups of a finite soluble group called the prefrattini subgroups. These subgroups have the property that they avoid the complemented chief factors of G and cover the rest. Subsequently, these results were generalized by Hawkes [12], Makan [14; 15] and Chambers [2]. Hawkes [12] and Makan [14] obtained conjugacy classes of subgroups which avoid certain complemented chief factors associated with a saturated formation or a Fischer class. Makan [15] and Chambers [2] showed that if W, D and V are the prefrattini subgroup, 𝔍-normalizer and a strongly pronormal subgroup associated with a Sylow basis S, then any two of W, D and V permute and the products and intersections of these subgroups have an explicit cover-avoidance property.


2000 ◽  
Vol 42 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Clara Franchi

For each m≥1, u_{m}(G) is defined to be the intersection of the normalizers of all the subnormal subgroups of defect at most m in G. An ascending chain of subgroups u_{m,i}(G) is defined by setting u_{m,i}(G)/u_{m,i−1}(G)=u_{m}(G/u_{m,i−1}(G)). If u_{m,n}(G)=G, for some integer n, the m-Wielandt length of G is the minimal of such n.In [3], Bryce examined the structure of a finite soluble group with given m-Wielandt length, in terms of its polynilpotent structure. In this paper we extend his results to infinite soluble groups.1991 Mathematics Subject Classification. 20E15, 20F22.


1987 ◽  
Vol 102 (3) ◽  
pp. 431-441 ◽  
Author(s):  
Brian Hartley ◽  
Volker Turau

Let G be a finite soluble group with Fitting subgroup F(G). The Fitting series of G is defined, as usual, by F0(G) = 1 and Fi(G)/Fi−1(G) = F(G/Fi−1(G)) for i ≥ 1, and the Fitting height h = h(G) of G is the least integer such that Fn(G) = G. Suppose now that a finite soluble group A acts on G. Let k be the composition length of A, that is, the number of prime divisors (counting multiplicities) of |A|. There is a certain amount of evidence in favour of theCONJECTURE. |G:Fk(G)| is bounded by a number depending only on |A| and |CG(A)|.


Sign in / Sign up

Export Citation Format

Share Document