scholarly journals Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups

Author(s):  
D. B. Mcalister

AbstractA partially ordered semigroup S is said to be a Dubreil-Jacotin semigroup if there is an isotone homomorphism θ of S onto a partially ordered group such that {} has a greatest member. In this paper we investigate the structure of regular Dubreil-Jacotin semigroups in which the imposed partial order extends the natural partial order on the idempotents. The main tool used is a local structure theorem which is introduced in Section 2. This local structure theorem applies to many other contexts as well.

Author(s):  
Karl Byleen

AbstractNon-completely simple bisimple semigroups S which are generated by a finite number of idempotents are studied by means of Rees matrix semigroups over local submonoids eSe, e = e2 ∈ S. If under the natural partial order on the set Es of idempotents of such a semigroup S the sets ω(e) = {ƒ ∈ Es: ƒ ≤ e} for each e ∈ Es are well-ordered, then S is shown to contain a subsemigroup isomorphic to Sp4, the fundamental four-spiral semigroup. A non-completely simple hisimple semigroup is constructed which is generated by 5 idempotents but which does not contain a subsemigroup isomorphic to Sp4.


1983 ◽  
Vol 26 (2) ◽  
pp. 213-220 ◽  
Author(s):  
D. B. McAlister ◽  
R. McFadden

We shall denote by ω the natural partial order on the idempotents E = E(S) of a regular semigroup S, so that in E,A partially ordered semigroup S(≦) is called naturally partially ordered [9] if the imposed partial order ≦ extends ω in the sense thatNo assumption is made about the reverse implication.


1972 ◽  
Vol 13 (4) ◽  
pp. 451-455 ◽  
Author(s):  
Stephen T. L. Choy

For a semigroup S let I(S) be the set of idempotents in S. A natural partial order of I(S) is defined by e ≦ f if ef = fe = e. An element e in I(S) is called a primitive idempotent if e is a minimal non-zero element of the partially ordered set (I(S), ≦). It is easy to see that an idempotent e in S is primitive if and only if, for any idempotent f in S, f = ef = fe implies f = e or f is the zero element of S. One may also easily verify that an idempotent e is primitive if and only if the only idempotents in eSe are e and the zero element. We let П(S) denote the set of primitive idempotent in S.


1980 ◽  
Vol 29 (4) ◽  
pp. 475-503 ◽  
Author(s):  
D. B. McAlister

AbstractIn this paper we obtain necessary and sufficient conditions on a regular semigroup in order that it should be an idempotent separating homomorphic image of a full subsemigroup of the direct product of a group and a fundamental or combinatorial regular semigroup. The main tool used is the concept of a prehomomrphism θ: S → T between regular semigroups. This is a mapping such that (ab) θ ≦ aθ bθ in the natural partial order on T.


2013 ◽  
Vol 89 (2) ◽  
pp. 279-292 ◽  
Author(s):  
SUREEPORN CHAOPRAKNOI ◽  
TEERAPHONG PHONGPATTANACHAROEN ◽  
PATTANACHAI RAWIWAN

AbstractFor a semigroup $S$, let ${S}^{1} $ be the semigroup obtained from $S$ by adding a new symbol 1 as its identity if $S$ has no identity; otherwise let ${S}^{1} = S$. Mitsch defined the natural partial order $\leqslant $ on a semigroup $S$ as follows: for $a, b\in S$, $a\leqslant b$ if and only if $a= xb= by$ and $a= ay$ for some $x, y\in {S}^{1} $. In this paper, we characterise the natural partial order on some transformation semigroups. In these partially ordered sets, we determine the compatibility of their elements, and find all minimal and maximal elements.


Author(s):  
R. P. Sullivan

Let V be any vector space and P(V) the set of all partial linear transformations defined on V, that is, all linear α: A → B, where A, B are subspaces of V. Then P(V) is a semigroup under composition, which is partially ordered by ⊆ (that is, α ⊆ β if and only if dom α ⊆ dom β and α = β | dom α). We compare this order with the so-called 'natural partial order' ≤ on P(V) and we determine their meet and join. We also describe all elements of P(V) that are minimal (or maximal) with respect to each of these four orders, and we characterize all elements that are 'compatible' with them. In addition, we answer similar questions for the semigroup T(V) consisting of all α ∈ P(V) whose domain equals V. Other orders have been defined by Petrich on any regular semigroup: three of them form a chain below ≤, and we show that two of these are equal on the semigroup P(V) and on the ring T(V). We also consider questions for these orders that are similar to those already mentioned


2014 ◽  
Vol 91 (1) ◽  
pp. 104-115 ◽  
Author(s):  
SUREEPORN CHAOPRAKNOI ◽  
TEERAPHONG PHONGPATTANACHAROEN ◽  
PONGSAN PRAKITSRI

AbstractHiggins [‘The Mitsch order on a semigroup’, Semigroup Forum 49 (1994), 261–266] showed that the natural partial orders on a semigroup and its regular subsemigroups coincide. This is why we are interested in the study of the natural partial order on nonregular semigroups. Of particular interest are the nonregular semigroups of linear transformations with lower bounds on the nullity or the co-rank. In this paper, we determine when they exist, characterise the natural partial order on these nonregular semigroups and consider questions of compatibility, minimality and maximality. In addition, we provide many examples associated with our results.


1973 ◽  
Vol 15 (4) ◽  
pp. 441-460 ◽  
Author(s):  
J. W. Hogan

Let S be a bisimple semigroup, let Es denote the set of idempotents of S, and let ≦ denote the natural partial order relation on Es. Let ≤ * denote the inverse of ≦. The idempotents of S are said to be well-ordered if (Es, ≦ *) is a well-ordered set.


Author(s):  
Paweł Pasteczka

Abstract Each family ℳ of means has a natural, partial order (point-wise order), that is M ≤ N iff M(x) ≤ N(x) for all admissible x. In this setting we can introduce the notion of interval-type set (a subset ℐ ⊂ℳ such that whenever M ≤ P ≤ N for some M, N ∈ℐ and P ∈ℳ then P ∈ℐ). For example, in the case of power means there exists a natural isomorphism between interval-type sets and intervals contained in real numbers. Nevertheless there appear a number of interesting objects for a families which cannot be linearly ordered. In the present paper we consider this property for Gini means and Hardy means. Moreover, some results concerning L∞ metric among (abstract) means will be obtained.


Sign in / Sign up

Export Citation Format

Share Document