scholarly journals Maximum idempotents in naturally ordered regular semigroups

1983 ◽  
Vol 26 (2) ◽  
pp. 213-220 ◽  
Author(s):  
D. B. McAlister ◽  
R. McFadden

We shall denote by ω the natural partial order on the idempotents E = E(S) of a regular semigroup S, so that in E,A partially ordered semigroup S(≦) is called naturally partially ordered [9] if the imposed partial order ≦ extends ω in the sense thatNo assumption is made about the reverse implication.

1980 ◽  
Vol 29 (4) ◽  
pp. 475-503 ◽  
Author(s):  
D. B. McAlister

AbstractIn this paper we obtain necessary and sufficient conditions on a regular semigroup in order that it should be an idempotent separating homomorphic image of a full subsemigroup of the direct product of a group and a fundamental or combinatorial regular semigroup. The main tool used is the concept of a prehomomrphism θ: S → T between regular semigroups. This is a mapping such that (ab) θ ≦ aθ bθ in the natural partial order on T.


Author(s):  
D. B. Mcalister

AbstractA partially ordered semigroup S is said to be a Dubreil-Jacotin semigroup if there is an isotone homomorphism θ of S onto a partially ordered group such that {} has a greatest member. In this paper we investigate the structure of regular Dubreil-Jacotin semigroups in which the imposed partial order extends the natural partial order on the idempotents. The main tool used is a local structure theorem which is introduced in Section 2. This local structure theorem applies to many other contexts as well.


Author(s):  
R. P. Sullivan

Let V be any vector space and P(V) the set of all partial linear transformations defined on V, that is, all linear α: A → B, where A, B are subspaces of V. Then P(V) is a semigroup under composition, which is partially ordered by ⊆ (that is, α ⊆ β if and only if dom α ⊆ dom β and α = β | dom α). We compare this order with the so-called 'natural partial order' ≤ on P(V) and we determine their meet and join. We also describe all elements of P(V) that are minimal (or maximal) with respect to each of these four orders, and we characterize all elements that are 'compatible' with them. In addition, we answer similar questions for the semigroup T(V) consisting of all α ∈ P(V) whose domain equals V. Other orders have been defined by Petrich on any regular semigroup: three of them form a chain below ≤, and we show that two of these are equal on the semigroup P(V) and on the ring T(V). We also consider questions for these orders that are similar to those already mentioned


2010 ◽  
Vol 17 (02) ◽  
pp. 229-240 ◽  
Author(s):  
Mario Petrich

Any semigroup S can be embedded into a semigroup, denoted by ΨS, having some remarkable properties. For general semigroups there is a close relationship between local submonoids of S and of ΨS. For a number of usual semigroup properties [Formula: see text], we prove that S and ΨS simultaneously satisfy [Formula: see text] or not. For a regular semigroup S, the relationship of S and ΨS is even closer, especially regarding the natural partial order and Green's relations; in addition, every element of ΨS is a product of at most four idempotents. For completely regular semigroups S, the relationship of S and ΨS is still closer. On the lattice [Formula: see text] of varieties of completely regular semigroups [Formula: see text] regarded as algebras with multiplication and inversion, by means of ΨS, we define an operator, denoted by Ψ. We compare Ψ with some of the standard operators on [Formula: see text] and evaluate it on a small sublattice of [Formula: see text].


1980 ◽  
Vol 23 (3) ◽  
pp. 249-260 ◽  
Author(s):  
K. S. Subramonian Nambooripad

It is well-known that on an inverse semigroup S the relation ≦ defined by a ≦ b if and only if aa−1 = ab−1 is a partial order (called the natural partial order) on S and that this relation is closely related to the global structure of S (cf. (1, §7.1), (10)). Our purpose here is to study a partial order on regular semigroups that coincides with the relation defined above on inverse semigroups. It is found that this relation has properties very similar to the properties of the natural partial order on inverse semigroups. However, this relation is not, in general, compatible with the multiplication in the semigroup. We show that this is true if and only if the semigroup is pseudo-inverse (cf. (8)). We also show how this relation may be used to obtain a simple description of the finest primitive congruence and the finest completely simple congruence on a regular semigroup.


1972 ◽  
Vol 13 (4) ◽  
pp. 451-455 ◽  
Author(s):  
Stephen T. L. Choy

For a semigroup S let I(S) be the set of idempotents in S. A natural partial order of I(S) is defined by e ≦ f if ef = fe = e. An element e in I(S) is called a primitive idempotent if e is a minimal non-zero element of the partially ordered set (I(S), ≦). It is easy to see that an idempotent e in S is primitive if and only if, for any idempotent f in S, f = ef = fe implies f = e or f is the zero element of S. One may also easily verify that an idempotent e is primitive if and only if the only idempotents in eSe are e and the zero element. We let П(S) denote the set of primitive idempotent in S.


1971 ◽  
Vol 23 (3) ◽  
pp. 507-516 ◽  
Author(s):  
Ernst August Behrens

An element a in a partially ordered semigroup T is called integral ifis valid. The integral elements form a subsemigroup S of T if they exist. Two different integral idempotents e and f in T generate different one-sided ideals, because eT = fT, say, implies e = fe ⊆ f and f = ef ⊆ e.Let M be a completely simple semigroup. M is the disjoint union of its maximal subgroups [4]. Their identity elements generate the minimal one-sided ideals in M. The previous paragraph suggests the introduction of the following hypothesis on M.Hypothesis 1. Every minimal one-sided ideal in M is generated by an integral idempotent.


2013 ◽  
Vol 89 (2) ◽  
pp. 279-292 ◽  
Author(s):  
SUREEPORN CHAOPRAKNOI ◽  
TEERAPHONG PHONGPATTANACHAROEN ◽  
PATTANACHAI RAWIWAN

AbstractFor a semigroup $S$, let ${S}^{1} $ be the semigroup obtained from $S$ by adding a new symbol 1 as its identity if $S$ has no identity; otherwise let ${S}^{1} = S$. Mitsch defined the natural partial order $\leqslant $ on a semigroup $S$ as follows: for $a, b\in S$, $a\leqslant b$ if and only if $a= xb= by$ and $a= ay$ for some $x, y\in {S}^{1} $. In this paper, we characterise the natural partial order on some transformation semigroups. In these partially ordered sets, we determine the compatibility of their elements, and find all minimal and maximal elements.


1967 ◽  
Vol 8 (1) ◽  
pp. 55-58 ◽  
Author(s):  
J. M. Howie

In the terminology of Clifford and Preston [2], a band B is a semigroup in which every element is idempotent. On such a semigroup there is a natural (partial) order relation defined by the ruleIf the order relation ≧ is compatible with the multiplication in B, in the sense that e ≧ f and g ≧ h together imply that eg ≧ fh, we shall say that B is a naturally ordered band. The object of this note is to describe the structure of naturally ordered bands.


1977 ◽  
Vol 29 (6) ◽  
pp. 1171-1197 ◽  
Author(s):  
Mario Petrich

We adopt the following definition of a completely regular semigroup S: for every element a of S, there exists a unique element a-1 of S such that


Sign in / Sign up

Export Citation Format

Share Document