scholarly journals Maximal quotient rings of prime group algebras. II Uniform right ideals

1977 ◽  
Vol 24 (3) ◽  
pp. 339-349 ◽  
Author(s):  
John Hannah

AbstractSuppose KG is a prime nonsingular group algebra with uniform right ideals. We show that G has no nontrivial locally finite normal subgroups. If G is soluble or residually finite, or if K has zero characteristic and G is linear, then the maximal right quotient ring of KG is simple Artinian.

1982 ◽  
Vol 23 (2) ◽  
pp. 103-113 ◽  
Author(s):  
D. S. Passman

Let G be a polycyclic-by-finite group and let K[G] denote its group algebra over the field K. In this paper we discuss localization in K[G] and in particular we prove that every faithful completely prime ideal is localizable. Furthermore, using a sequence of localizations, we show that, for G polyinfinite cyclic, the classical right quotient ring (K[G]) is in fact a universal field of fractions for K[G]. Finally we offer an example of a domain K[G] which does not have a universal field of fractions.


2016 ◽  
Vol 16 (09) ◽  
pp. 1750170
Author(s):  
M. Ramezan-Nassab

Let [Formula: see text] be a group, [Formula: see text] a field of characteristic [Formula: see text], and [Formula: see text] the unit group of the group algebra [Formula: see text]. In this paper, among other results, we show that if either (1) [Formula: see text] satisfies a non-matrix polynomial identity, or (2) [Formula: see text] is locally finite, [Formula: see text] is infinite and [Formula: see text] is an Engel-by-finite group, then the [Formula: see text]-elements of [Formula: see text] form a (normal) subgroup [Formula: see text] and [Formula: see text] is abelian (here, of course, [Formula: see text] if [Formula: see text]).


1982 ◽  
Vol 23 (1) ◽  
pp. 65-82 ◽  
Author(s):  
M. R. Dixon

In this paper we shall indicate how to generalise the concept of a cofinite group (see [7]). We recall that any residually finite group can be made into a topological group by taking as a basis of neighbourhoods of the identity precisely the normal subgroups of finite index. The class of compact cofinite groups is then easily seen to be the class of profinite groups, where a group is profinite if and only if it is an inverse limit of finite groups. It turns out that every cofinite group can be embedded as a dense subgroup of a profinite group. This has important consequences for the class of countable locally finite-soluble groups with finite Sylow p-subgroups for all primes p, as shown in [7] and [14].


2016 ◽  
Vol 101 (2) ◽  
pp. 244-252 ◽  
Author(s):  
M. RAMEZAN-NASSAB

Let $F$ be a field of characteristic $p\geq 0$ and $G$ any group. In this article, the Engel property of the group of units of the group algebra $FG$ is investigated. We show that if $G$ is locally finite, then ${\mathcal{U}}(FG)$ is an Engel group if and only if $G$ is locally nilpotent and $G^{\prime }$ is a $p$-group. Suppose that the set of nilpotent elements of $FG$ is finite. It is also shown that if $G$ is torsion, then ${\mathcal{U}}(FG)$ is an Engel group if and only if $G^{\prime }$ is a finite $p$-group and $FG$ is Lie Engel, if and only if ${\mathcal{U}}(FG)$ is locally nilpotent. If $G$ is nontorsion but $FG$ is semiprime, we show that the Engel property of ${\mathcal{U}}(FG)$ implies that the set of torsion elements of $G$ forms an abelian normal subgroup of $G$.


2019 ◽  
Vol 19 (02) ◽  
pp. 2050036
Author(s):  
Morteza Baniasad Azad ◽  
Behrooz Khosravi

In this paper, we prove that the direct product [Formula: see text], where [Formula: see text] are distinct numbers, is uniquely determined by its complex group algebra. Particularly, we show that the direct product [Formula: see text], where [Formula: see text]’s are distinct odd prime numbers, is uniquely determined by its order and three irreducible character degrees.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650150 ◽  
Author(s):  
Hongdi Huang ◽  
Yuanlin Li ◽  
Gaohua Tang

A ring with involution ∗ is called ∗-clean if each of its elements is the sum of a unit and a projection (∗-invariant idempotent). In this paper, we consider the group algebras of the dihedral groups [Formula: see text], and the generalized quaternion groups [Formula: see text] with standard involution ∗. For the non-semisimple group algebra case, we characterize the ∗-cleanness of [Formula: see text] with a prime [Formula: see text], and [Formula: see text] with [Formula: see text], where [Formula: see text] is a commutative local ring. For the semisimple group algebra case, we investigate when [Formula: see text] is ∗-clean, where [Formula: see text] is the field of rational numbers [Formula: see text] or a finite field [Formula: see text] and [Formula: see text] or [Formula: see text].


2016 ◽  
Vol 15 (08) ◽  
pp. 1650149 ◽  
Author(s):  
Said El Baghdadi ◽  
Marco Fontana ◽  
Muhammad Zafrullah

Let [Formula: see text] be an integral domain with quotient field [Formula: see text]. Call an overring [Formula: see text] of [Formula: see text] a subring of [Formula: see text] containing [Formula: see text] as a subring. A family [Formula: see text] of overrings of [Formula: see text] is called a defining family of [Formula: see text], if [Formula: see text]. Call an overring [Formula: see text] a sublocalization of [Formula: see text], if [Formula: see text] has a defining family consisting of rings of fractions of [Formula: see text]. Sublocalizations and their intersections exhibit interesting examples of semistar or star operations [D. D. Anderson, Star operations induced by overrings, Comm. Algebra 16 (1988) 2535–2553]. We show as a consequence of our work that domains that are locally finite intersections of Prüfer [Formula: see text]-multiplication (respectively, Mori) sublocalizations turn out to be Prüfer [Formula: see text]-multiplication domains (PvMDs) (respectively, Mori); in particular, for the Mori domain case, we reobtain a special case of Théorème 1 of [J. Querré, Intersections d’anneaux intègers, J. Algebra 43 (1976) 55–60] and Proposition 3.2 of [N. Dessagnes, Intersections d’anneaux de Mori — exemples, Port. Math. 44 (1987) 379–392]. We also show that, more than the finite character of the defining family, it is the finite character of the star operation induced by the defining family that causes the interesting results. As a particular case of this theory, we provide a purely algebraic approach for characterizing P vMDs as a subclass of the class of essential domains (see also Theorem 2.4 of [C. A. Finocchiaro and F. Tartarone, On a topological characterization of Prüfer [Formula: see text]-multiplication domains among essential domains, preprint (2014), arXiv:1410.4037]).


2013 ◽  
Vol 12 (08) ◽  
pp. 1350044
Author(s):  
TIBOR JUHÁSZ ◽  
ENIKŐ TÓTH

Let K be a field of odd characteristic p, and let G be the direct product of a finite p-group P ≠ 1 and a Hamiltonian 2-group. We show that the set of symmetric elements (KG)* of the group algebra KG with respect to the involution of KG which inverts all elements of G, satisfies all Lie commutator identities of degree t(P) or more, where t(P) denotes the nilpotency index of the augmentation ideal of the group algebra KP. In addition, if P is powerful, then (KG)* satisfies no Lie commutator identity of degree less than t(P). Applying this result we get that (KG)* is Lie nilpotent and Lie solvable, and its Lie nilpotency index and Lie derived length are not greater than t(P) and ⌈ log 2 t(P)⌉, respectively, and these bounds are attained whenever P is a powerful group. The corresponding result on the set of symmetric units of KG is also obtained.


2008 ◽  
Vol 51 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Ernesto Spinelli

AbstractLet KG be a non-commutative strongly Lie solvable group algebra of a group G over a field K of positive characteristic p. In this note we state necessary and sufficient conditions so that the strong Lie derived length of KG assumes its minimal value, namely [log2(p + 1)].


Author(s):  
Alonso Castillo-Ramirez

For a group [Formula: see text] and a set [Formula: see text], let [Formula: see text] be the monoid of all cellular automata over [Formula: see text], and let [Formula: see text] be its group of units. By establishing a characterization of surjunctive groups in terms of the monoid [Formula: see text], we prove that the rank of [Formula: see text] (i.e. the smallest cardinality of a generating set) is equal to the rank of [Formula: see text] plus the relative rank of [Formula: see text] in [Formula: see text], and that the latter is infinite when [Formula: see text] has an infinite decreasing chain of normal subgroups of finite index, condition which is satisfied, for example, for any infinite residually finite group. Moreover, when [Formula: see text] is a vector space over a field [Formula: see text], we study the monoid [Formula: see text] of all linear cellular automata over [Formula: see text] and its group of units [Formula: see text]. We show that if [Formula: see text] is an indicable group and [Formula: see text] is finite-dimensional, then [Formula: see text] is not finitely generated; however, for any finitely generated indicable group [Formula: see text], the group [Formula: see text] is finitely generated if and only if [Formula: see text] is finite.


Sign in / Sign up

Export Citation Format

Share Document