scholarly journals A posteriori error estimates for elliptic boundary-value problems

Author(s):  
W. L. Chan

AbstractA posteriori error estimates for a class of elliptic unilateral boundary value problems are obtained for functions satisfying only part of the boundary conditions. Next, we give an alternative approach to the a posteriori error estimates for self-adjoint boundary value problems developed by Aubin and Burchard. Further, we are able to construct an alternative estimate with mild additional assumptions. An example of a linear differential operator of order 2k is given.

Author(s):  
Kazuaki Tanaka ◽  
Taisei Asai

AbstractThe purpose of this paper is to develop a unified a posteriori method for verifying the positivity of solutions of elliptic boundary value problems by assuming neither $$H^2$$ H 2 -regularity nor $$ L^{\infty } $$ L ∞ -error estimation, but only $$ H^1_0 $$ H 0 1 -error estimation. In (J Comput Appl Math 370:112647, 2020), we proposed two approaches to verify the positivity of solutions of several semilinear elliptic boundary value problems. However, some cases require $$ L^{\infty } $$ L ∞ -error estimation and, therefore, narrow applicability. In this paper, we extend one of the approaches and combine it with a priori error bounds for Laplacian eigenvalues to obtain a unified method that has wide application. We describe how to evaluate some constants required to verify the positivity of desired solutions. We apply our method to several problems, including those to which the previous method is not applicable.


Sign in / Sign up

Export Citation Format

Share Document