positivity of solutions
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Kazuaki Tanaka ◽  
Taisei Asai

AbstractThe purpose of this paper is to develop a unified a posteriori method for verifying the positivity of solutions of elliptic boundary value problems by assuming neither $$H^2$$ H 2 -regularity nor $$ L^{\infty } $$ L ∞ -error estimation, but only $$ H^1_0 $$ H 0 1 -error estimation. In (J Comput Appl Math 370:112647, 2020), we proposed two approaches to verify the positivity of solutions of several semilinear elliptic boundary value problems. However, some cases require $$ L^{\infty } $$ L ∞ -error estimation and, therefore, narrow applicability. In this paper, we extend one of the approaches and combine it with a priori error bounds for Laplacian eigenvalues to obtain a unified method that has wide application. We describe how to evaluate some constants required to verify the positivity of desired solutions. We apply our method to several problems, including those to which the previous method is not applicable.


Author(s):  
M. Pitchaimani ◽  
A. Saranya Devi

In this manuscript, we design a fractional order delay differential equation model for HIV transmission with the implementation of three distinct therapies for three different infectious stages. We investigate the positivity of solutions, analyze the stability properties, followed by Hopf bifurcation analysis. To probe the parameters that expedite the spread of infection, uncertainty and sensitivity analysis were performed. The numerical review was carried out to substantiate our theoretical results. Our proposed model parameters have been calibrated to fit yearly data from Afghanistan, Australia, France, Italy, Netherlands and New Zealand.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Kęstutis Kubilius ◽  
Aidas Medžiūnas

We study a class of fractional stochastic differential equations (FSDEs) with coefficients that may not satisfy the linear growth condition and non-Lipschitz diffusion coefficient. Using the Lamperti transform, we obtain conditions for positivity of solutions of such equations. We show that the trajectories of the fractional CKLS model with β>1 are not necessarily positive. We obtain the almost sure convergence rate of the backward Euler approximation scheme for solutions of the considered SDEs. We also obtain a strongly consistent and asymptotically normal estimator of the Hurst index H>1/2 for positive solutions of FSDEs.


2020 ◽  
Vol 10 (1) ◽  
pp. 353-370 ◽  
Author(s):  
Hans-Christoph Grunau ◽  
Nobuhito Miyake ◽  
Shinya Okabe

Abstract This paper is concerned with the positivity of solutions to the Cauchy problem for linear and nonlinear parabolic equations with the biharmonic operator as fourth order elliptic principal part. Generally, Cauchy problems for parabolic equations of fourth order have no positivity preserving property due to the change of sign of the fundamental solution. One has eventual local positivity for positive initial data, but on short time scales, one will in general have also regions of negativity. The first goal of this paper is to find sufficient conditions on initial data which ensure the existence of solutions to the Cauchy problem for the linear biharmonic heat equation which are positive for all times and in the whole space. The second goal is to apply these results to show existence of globally positive solutions to the Cauchy problem for a semilinear biharmonic parabolic equation.


2019 ◽  
Vol 29 (12) ◽  
pp. 1950164 ◽  
Author(s):  
Zuolin Shen ◽  
Junjie Wei

We study the spatiotemporal patterns of a delayed reaction–diffusion mussel–algae system subject to Neumann boundary conditions. This paper is a continuation of our previous studies on the mussel–algae model. We prove the global existence and positivity of solutions. By analyzing the distribution of eigenvalues, we obtain the stability conditions for the positive constant steady state, the existence of Hopf bifurcation and the Turing instability. We show the dynamic classification near the Turing–Hopf singularity in the dimensionless parameter space and observe a transiently spatially nonhomogeneous periodic solution in simulations. Both theoretical and numerical results reveal that the Turing–Hopf bifurcation can enrich the diversity of the spatial distribution of populations.


2019 ◽  
Vol 29 (07) ◽  
pp. 1950091 ◽  
Author(s):  
Chuangxia Huang ◽  
Hua Zhang ◽  
Jinde Cao ◽  
Haijun Hu

Dealing with the epidemiological prey–predator is very important for us to understand the dynamical characteristics of population models. The existing literature has shown that disease introduction into the predator group can destabilize the established prey–predator communities. In this paper, we establish a new delayed SIS epidemiological prey–predator model with the assumptions that the disease is transmitted among the predator species only and different type of predators have different functional responses, viz. the infected predator consumes the prey according to Holling type-II functional response and the susceptible predator consumes the prey following the law of mass action. The positivity of solutions, the existence of various equilibrium points, the stability and bifurcation at those equilibrium points are investigated at length. Using the incubation period as bifurcation parameter, it is observed that a Hopf bifurcation may occur around the equilibrium points when the parameter passes through some critical values. We also discuss the direction and stability of the Hopf bifurcation around the interior equilibrium point. Simulations are arranged to show the correctness and effectiveness of these theoretical results.


2018 ◽  
Vol 28 (14) ◽  
pp. 2905-2939
Author(s):  
J. Tervo ◽  
P. Kokkonen ◽  
M. Frank ◽  
M. Herty

We present results on existence and positivity of solutions for a linear Boltzmann transport equation used for example in radiotherapy applications and more generally in charged particle transports. Therein, some differential cross-sections, that is, kernels of collision integral operators, may become hyper-singular. These collision operators need to be approximated for analytical and numerical treatments. Here, we present an approximation leading to pseudo-differential operators. The final approximation, for which the existence and positivity of solutions is shown, is an integro-partial differential operator which is known as Continuous Slowing Down Approximation (CSDA).


Sign in / Sign up

Export Citation Format

Share Document