scholarly journals Orbit entropy in noninvertible mappings

Author(s):  
Uhland Burkart

AbstractBassed on the intrinsic structure of a selfmapping T: S → S of an arbitrary set S, called the orbit-structure of T, a new entropy is defined. The idea is to use the number of preimages of an element x under the iterates of T to characterize the complexity of the transformation T and their orbit graphs. The fundamental properties of the orbit entropy related to iteration, iterative roots and iteration semigroups are studied. For continuous (differentiable) functions of Rn to Rn, the chaos of Li and Yorke is characterized by means of this entropy, mainly using the method of Straffingraphs.

Author(s):  
P. Humble

There has been sustained interest over the last few years into both the intrinsic (primary and secondary) structure of grain boundaries and the extrinsic structure e.g. the interaction of matrix dislocations with the boundary. Most of the investigations carried out by electron microscopy have involved only the use of information contained in the transmitted image (bright field, dark field, weak beam etc.). Whilst these imaging modes are appropriate to the cases of relatively coarse intrinsic or extrinsic grain boundary dislocation structures, it is apparent that in principle (and indeed in practice, e.g. (1)-(3)) the diffraction patterns from the boundary can give extra independent information about the fine scale periodic intrinsic structure of the boundary.In this paper I shall describe one investigation into each type of structure using the appropriate method of obtaining the necessary information which has been carried out recently at Tribophysics.


2003 ◽  
Vol 762 ◽  
Author(s):  
J. David Cohen

AbstractThis paper first briefly reviews a few of the early studies that established some of the salient features of light-induced degradation in a-Si,Ge:H. In particular, I discuss the fact that both Si and Ge metastable dangling bonds are involved. I then review some of the recent studies carried out by members of my laboratory concerning the details of degradation in the low Ge fraction alloys utilizing the modulated photocurrent method to monitor the individual changes in the Si and Ge deep defects. By relating the metastable creation and annealing behavior of these two types of defects, new insights into the fundamental properties of metastable defects have been obtained for amorphous silicon materials in general. I will conclude with a brief discussion of the microscopic mechanisms that may be responsible.


2016 ◽  
pp. 4014-4017
Author(s):  
Michael A Persinger

                The value for the Lorentz contraction to produce a discrepancy for a hypothetical number that reflects a property (21.3π4) of sub-matter space was calculated. When applied to time the contraction would be ~35 min. The difference in mass-equivalent energy for an electron at c (the velocity of light in a vacuum) and the required v was ~2 ·10-20 J which has emerged as a significant quantity that may permeate from the force at Planck’s Length when applied across the wavelength of the neutral hydrogen line. Two separate types of photomultiplier instruments (digital and analogue) measuring with different sampling rates for background photon quantities over 50 randomly selected days demonstrated averaged conspicuous inflections of standardized spectral power densities around 35 min. This is the same basic interval where microvariations in the value of the gravitational constant (G) approached a limit at which white noise dominated.  The possibility is considered that this value for temporal inflections in photon power spectral densities may reflect the intrinsic nature of space-time contractions that relate gravity and photons.


2014 ◽  
Vol 68 (8) ◽  
pp. 837-840
Author(s):  
Tsuguyuki Saito ◽  
Yuri Kobayashi ◽  
Shuji Fujisawa ◽  
Chun-Nan Wu ◽  
Akira Isogai

2018 ◽  
Vol 72 (7) ◽  
pp. 715-720
Author(s):  
Yukinori Kobayashi ◽  
Yasutomo Noishiki ◽  
Manabu Yamamoto

Sign in / Sign up

Export Citation Format

Share Document