scholarly journals A generalization of Hermite's interpolation formula in two variables

1974 ◽  
Vol 18 (4) ◽  
pp. 402-410 ◽  
Author(s):  
M. M. Chawla ◽  
N. Jayarajan

Spitzbart [1] has considered a generalization of Hermite's interpolation formula in one variable and has obtained a polynomial p(x) of degree n + Σnj=0 = rj in x which interpolates to the values of a function and its derivatives up to order rj at xj, j = 0, 1,···n. Ahlin [2] has considered a bivariate generalization of Hermite's interpolation formula. He has developed a bivariate osculatory interpolation polynomial which agrees with f(x, y) and its partial and mixed partial derivatives up to a specified order at each of the nodes of a Cartesian grid. However, the above interpolation problem considered by Ahlin assumes that the values of partial and mixed partial derivatives of the same fixed order k – 1 are available at every point of the rectangular grid. It may also be observed that Ahlin's formula is essentially a Cartesian product of a special case of Spitzbart's formula in one variable.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nishant Gupta ◽  
Nemani V. Suryanarayana

Abstract We construct classical theories for scalar fields in arbitrary Carroll spacetimes that are invariant under Carrollian diffeomorphisms and Weyl transformations. When the local symmetries are gauge fixed these theories become Carrollian conformal field theories. We show that generically there are at least two types of such theories: one in which only time derivatives of the fields appear and the other in which both space and time derivatives appear. A classification of such scalar field theories in three (and higher) dimensions up to two derivative order is provided. We show that only a special case of our theories arises in the ultra-relativistic limit of a covariant parent theory.


1949 ◽  
Vol 2 (4) ◽  
pp. 469
Author(s):  
W Freiberger ◽  
RCT Smith

In this paper we discuss the flexure of an incomplete tore in the plane of its circular centre-line. We reduce the problem to the determination of two harmonic functions, subject to boundary conditions on the surface of the tore which involve the first two derivatives of the functions. We point out the relation of this solution to the general solution of three-dimensional elasticity problems. The special case of a narrow rectangular cross-section is solved exactly in Appendix II.


Author(s):  
Nitin Arora ◽  
Ryan P. Russell ◽  
Nathan J. Strange

1968 ◽  
Vol 5 (2) ◽  
pp. 401-413 ◽  
Author(s):  
Paul J. Schweitzer

A perturbation formalism is presented which shows how the stationary distribution and fundamental matrix of a Markov chain containing a single irreducible set of states change as the transition probabilities vary. Expressions are given for the partial derivatives of the stationary distribution and fundamental matrix with respect to the transition probabilities. Semi-group properties of the generators of transformations from one Markov chain to another are investigated. It is shown that a perturbation formalism exists in the multiple subchain case if and only if the change in the transition probabilities does not alter the number of, or intermix the various subchains. The formalism is presented when this condition is satisfied.


10.37236/160 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Daniel Král' ◽  
Douglas B. West

Let ${\cal G}$ be a class of graphs. A $d$-fold grid over ${\cal G}$ is a graph obtained from a $d$-dimensional rectangular grid of vertices by placing a graph from ${\cal G}$ on each of the lines parallel to one of the axes. Thus each vertex belongs to $d$ of these subgraphs. The class of $d$-fold grids over ${\cal G}$ is denoted by ${\cal G}^d$. Let $f({\cal G};d)=\max_{G\in{\cal G}^d}\chi(G)$. If each graph in ${\cal G}$ is $k$-colorable, then $f({\cal G};d)\le k^d$. We show that this bound is best possible by proving that $f({\cal G};d)=k^d$ when ${\cal G}$ is the class of all $k$-colorable graphs. We also show that $f({\cal G};d)\ge{\left\lfloor\sqrt{{d\over 6\log d}}\right\rfloor}$ when ${\cal G}$ is the class of graphs with at most one edge, and $f({\cal G};d)\ge {\left\lfloor{d\over 6\log d}\right\rfloor}$ when ${\cal G}$ is the class of graphs with maximum degree $1$.


2020 ◽  
Vol 8 (2) ◽  
pp. 24-39
Author(s):  
V. Gorodetskiy ◽  
R. Kolisnyk ◽  
O. Martynyuk

Spaces of $S$ type, introduced by I.Gelfand and G.Shilov, as well as spaces of type $S'$, topologically conjugate with them, are natural sets of the initial data of the Cauchy problem for broad classes of equations with partial derivatives of finite and infinite orders, in which the solutions are integer functions over spatial variables. Functions from spaces of $S$ type on the real axis together with all their derivatives at $|x|\to \infty$ decrease faster than $\exp\{-a|x|^{1/\alpha}\}$, $\alpha > 0$, $a > 0$, $x\in \mathbb{R}$. The paper investigates a nonlocal multipoint by time problem for equations with partial derivatives of parabolic type in the case when the initial condition is given in a certain space of generalized functions of the ultradistribution type ($S'$ type). Moreover, results close to the Cauchy problem known in theory for such equations with an initial condition in the corresponding spaces of generalized functions of $S'$ type were obtained. The properties of the fundamental solution of a nonlocal multipoint by time problem are investigated, the correct solvability of the problem is proved, the image of the solution in the form of a convolution of the fundamental solution with the initial generalized function, which is an element of the space of generalized functions of $S'$ type.


Sign in / Sign up

Export Citation Format

Share Document