scholarly journals Some new series of Hadamard matrices

Author(s):  
Mieko Yamada

AbstractThe purpose of this paper is to prove (1) if q ≡ 1 (mod 8) is a prime power and there exists a Hadamard matrix of order (q − 1)/2, then we can construct a Hadamard matrix of order 4q, (2) if q ≡ 5 (mod 8) is a prime power and there exists a skew-Hadamard matrix of order (q + 3)/2, then we can construct a Hadamard matrix of order 4(q + 2), (3) if q ≡ 1 (mod 8) is a prime power and there exists a symmetric C-matrix of order (q + 3)/2, then we can construct a Hadamard matrix of order 4(q + 2).We have 36, 36 and 8 new orders 4n for n ≤ 10000, of Hadamard matrices from the first, the second and third theorem respectively, which were known to the list of Geramita and Seberry. We prove these theorems by using an adaptation of generalized quaternion type array and relative Gauss sums.

1975 ◽  
Vol 27 (3) ◽  
pp. 555-560 ◽  
Author(s):  
Edward Spence

1. Introduction. We prove, using a theorem of M. Hall on cyclic projective planes, that if g is a prime power such that either 1 + q + q2 is a prime congruent to 3, 5 or 7 (mod 8) or 3 + 2q + 2q2 is a prime power, then there exists a skew-Hadamard matrix of the Goethals-Seidel type of order 4(1 + q + q2). (A Hadamard matrix H is said to be of skew type if one of H + I, H — lis skew symmetric. ) If 1 + q + q2 is a prime congruent to 1 (mod 8), then a Hadamard matrix, not necessarily of skew type, of order 4(1 + q + q2) is constructed. The smallest new Hadamard matrix obtained has order 292.


1971 ◽  
Vol 23 (3) ◽  
pp. 531-535 ◽  
Author(s):  
Richard J. Turyn

A C-matrix is a square matrix of order m + 1 which is 0 on the main diagonal, has ±1 entries elsewhere and satisfies . Thus, if , I + C is an Hadamard matrix of skew type [3; 6] and, if , iI + C is a (symmetric) complex Hadamard matrix [4]. For m > 1, we must have . Such matrices arise from the quadratic character χ in a finite field, when m is an odd prime power, as [χ(ai – aj)] suitably bordered, and also from some other constructions, in particular those of skew type Hadamard matrices. (For we must have m = a2 + b2, a, b integers.)


10.37236/1479 ◽  
1999 ◽  
Vol 7 (1) ◽  
Author(s):  
H. Kharaghani

Let $4n^2$ be the order of a Bush-type Hadamard matrix with $q=(2n-1)^2$ a prime power. It is shown that there is a weighing matrix $$ W(4(q^m+q^{m-1}+\cdots+q+1)n^2,4q^mn^2) $$ which includes two symmetric designs with the Ionin–type parameters $$ \nu=4(q^m+q^{m-1}+\cdots+q+1)n^2,\;\;\; \kappa=q^m(2n^2-n), \;\;\; \lambda=q^m(n^2-n) $$ for every positive integer $m$. Noting that Bush–type Hadamard matrices of order $16n^2$ exist for all $n$ for which an Hadamard matrix of order $4n$ exist, this provides a new class of symmetric designs.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550017 ◽  
Author(s):  
Maarten Havinga

The main result of this paper is a construction for complex Hadamard matrices: for [Formula: see text] any prime power and [Formula: see text] the size of a real Hadamard matrix, this construction yields a family of complex Hadamard matrices of order [Formula: see text] with [Formula: see text] parameters, including Butson-type matrices of even type [Formula: see text] a divisor of [Formula: see text]. Only a few lowdimensional examples and the real Hadamard matrices obtained by this construction are already known. Also a small extension of Diţa’s construction (cf. Lemma 1) is given.


1977 ◽  
Vol 24 (2) ◽  
pp. 252-256 ◽  
Author(s):  
Edward Spence

AbstractIn this paper the following result is proved. Suppose there exists a C-matrix of order n + 1. Then if n≡1 (mod 4) there exists a Hadamard matrix of order 2nr(n + 1), while if n≡3 (mod 4) there exists a Hadamard matrix of order nr(n + 1) for all r ≧0. If n≡1 (mod 4) is a prime power, the method is adapted to prove the existence of a Hadamard matrix of the Williamson type, of order 2nr(n + 1), for all r ≧0.


2019 ◽  
Vol 349 ◽  
pp. 1036-1116 ◽  
Author(s):  
Karin Erdmann ◽  
Andrzej Skowroński

2018 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Takuya Ikuta ◽  
Akihiro Munemasa

Abstract We consider nonsymmetric hermitian complex Hadamard matrices belonging to the Bose-Mesner algebra of commutative nonsymmetric association schemes. First, we give a characterization of the eigenmatrix of a commutative nonsymmetric association scheme of class 3 whose Bose-Mesner algebra contains a nonsymmetric hermitian complex Hadamard matrix, and show that such a complex Hadamard matrix is necessarily a Butson-type complex Hadamard matrix whose entries are 4-th roots of unity.We also give nonsymmetric association schemes X of class 6 on Galois rings of characteristic 4, and classify hermitian complex Hadamard matrices belonging to the Bose-Mesner algebra of X. It is shown that such a matrix is again necessarily a Butson-type complex Hadamard matrix whose entries are 4-th roots of unity.


1976 ◽  
Vol 21 (2) ◽  
pp. 247-256 ◽  
Author(s):  
Marshall Hall

An Hadamard matrix H is a square matrix of order n all of whose entries are ± 1 such thatThere are matrices of order 1 and 2and for all other Hadamard matrices the order n is a multiple of 4, n = 4m. It is a reasonable conjecture that Hadamard matrices exist for every order which is a multiple of 4 and the lowest order in doubt is 268. With every Hadamard matrix H4m a symmetric design D exists with


Sign in / Sign up

Export Citation Format

Share Document