Rank 1 preservers on the unitary Lie ring

Author(s):  
W. J. Wong

AbstractThe surjective additive maps on the Lie ring of skew-Hermitian linear transformations on a finite-dimensional vector space over a division ring which preserve the set of rank 1 elements are determined. As an application, maps preserving commuting pairs of transformations are determined.

1985 ◽  
Vol 28 (3) ◽  
pp. 319-331 ◽  
Author(s):  
M. A. Reynolds ◽  
R. P. Sullivan

Let X be a set and the semigroup (under composition) of all total transformations from X into itself. In ([6], Theorem 3) Howie characterised those elements of that can be written as a product of idempotents in different from the identity. We gather from review articles that his work was later extended by Evseev and Podran [3, 4] (and independently for finite X by Sullivan [15]) to the semigroup of all partial transformations of X into itself. Howie's result was generalized in a different direction by Kim [8], and it has also been considered in both a topological and a totally ordered setting (see [11] and [14] for brief summaries of this latter work). In addition, Magill [10] investigated the corresponding idea for endomorphisms of a Boolean ring, while J. A. Erdos [2] resolved the analogous problem for linear transformations of a finite–dimensional vector space.


1993 ◽  
Vol 45 (2) ◽  
pp. 357-368 ◽  
Author(s):  
Ming–Huat Lim

AbstractLet U be a finite dimensional vector space over an infinite field F. Let U(r) denote the r–th symmetric product space over U. Let T: U(r) → U(s) be a linear transformation which sends nonzero decomposable elements to nonzero decomposable elements. Let dim U ≥ s + 1. Then we obtain the structure of T for the following cases: (I) F is algebraically closed, (II) F is the real field, and (III) T is injective.


2012 ◽  
Vol 49 (4) ◽  
pp. 549-557
Author(s):  
Bui Hai ◽  
Trinh Deo ◽  
Mai Bien

Let D be a division ring with center F. We say that D is a division ring of type 2 if for every two elements x, y ∈ D, the division subring F(x, y) is a finite dimensional vector space over F. In this paper we investigate multiplicative subgroups in such a ring.


2009 ◽  
Vol 12 (17) ◽  
pp. 5-11
Author(s):  
Bien Hoang Mai ◽  
Hai Xuan Bui

Let D be a division ring with the center F and suppose that D* is the multiplicative group of D. D is called centrally finite if D is a finite dimensional vector space over F and D is locally centrally finite if every finite subset of D generates over F a division subring which is a finite dimensional vector space over F. We say that D is a linear division ring if every finite subset of D generates over Fa centrally finite division subring. It is obvious that every locally centrally finite division ring is linear. In this report we show that the inverse is not true by giving an example of a linear division ring which is not locally centrally finite. Further, we give some properties of subgroups in linear division rings. In particular, we show that every finitely generated subnormal subgroup in a linear ring is central. An interesting corollary is obtained as the following: If D is a linear division ring and D* is finitely generated, then D is a finite field.


1971 ◽  
Vol 41 ◽  
pp. 69-73 ◽  
Author(s):  
Takehiko Miyata

Let G be a group and let k be a field. A K-representation ρ of G is a homomorphism of G into the group of non-singular linear transformations of some finite-dimensional vector space V over k. Let K be the field of fractions of the symmetric algebra S(V) of V, then G acts naturally on K as k-automorphisms. There is a natural inclusion map V→K, so we view V as a k-subvector space of K. Let v1, v2, · · ·, vn be a basis for V, then K is generated by v1, v2, · · ·, vn over k as a field and these are algebraically independent over k, that is, K is a rational field over k with the transcendence degree n. All elements of K fixed by G form a subfield of K. We denote this subfield by KG.


2008 ◽  
Vol 16 (3) ◽  
pp. 269-275 ◽  
Author(s):  
Karol Pąk

Linear Map of MatricesThe paper is concerned with a generalization of concepts introduced in [13], i.e. introduced are matrices of linear transformations over a finitedimensional vector space. Introduced are linear transformations over a finitedimensional vector space depending on a given matrix of the transformation. Finally, I prove that the rank of linear transformations over a finite-dimensional vector space is the same as the rank of the matrix of that transformation.


1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


1961 ◽  
Vol 4 (3) ◽  
pp. 261-264
Author(s):  
Jonathan Wild

Let E be a finite dimensional vector space over an arbitrary field. In E a bilinear form is given. It associates with every sub s pa ce V its right orthogonal sub space V* and its left orthogonal subspace *V. In general we cannot expect that dim V* = dim *V. However this relation will hold in some interesting special cases.


Sign in / Sign up

Export Citation Format

Share Document