scholarly journals LINEAR DIVISION RINGS

2009 ◽  
Vol 12 (17) ◽  
pp. 5-11
Author(s):  
Bien Hoang Mai ◽  
Hai Xuan Bui

Let D be a division ring with the center F and suppose that D* is the multiplicative group of D. D is called centrally finite if D is a finite dimensional vector space over F and D is locally centrally finite if every finite subset of D generates over F a division subring which is a finite dimensional vector space over F. We say that D is a linear division ring if every finite subset of D generates over Fa centrally finite division subring. It is obvious that every locally centrally finite division ring is linear. In this report we show that the inverse is not true by giving an example of a linear division ring which is not locally centrally finite. Further, we give some properties of subgroups in linear division rings. In particular, we show that every finitely generated subnormal subgroup in a linear ring is central. An interesting corollary is obtained as the following: If D is a linear division ring and D* is finitely generated, then D is a finite field.

2012 ◽  
Vol 49 (4) ◽  
pp. 549-557
Author(s):  
Bui Hai ◽  
Trinh Deo ◽  
Mai Bien

Let D be a division ring with center F. We say that D is a division ring of type 2 if for every two elements x, y ∈ D, the division subring F(x, y) is a finite dimensional vector space over F. In this paper we investigate multiplicative subgroups in such a ring.


Author(s):  
W. J. Wong

AbstractThe surjective additive maps on the Lie ring of skew-Hermitian linear transformations on a finite-dimensional vector space over a division ring which preserve the set of rank 1 elements are determined. As an application, maps preserving commuting pairs of transformations are determined.


1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


1961 ◽  
Vol 4 (3) ◽  
pp. 261-264
Author(s):  
Jonathan Wild

Let E be a finite dimensional vector space over an arbitrary field. In E a bilinear form is given. It associates with every sub s pa ce V its right orthogonal sub space V* and its left orthogonal subspace *V. In general we cannot expect that dim V* = dim *V. However this relation will hold in some interesting special cases.


1982 ◽  
Vol 86 ◽  
pp. 229-248 ◽  
Author(s):  
Haruhisa Nakajima

Let k be a field of characteristic p and G a finite subgroup of GL(V) where V is a finite dimensional vector space over k. Then G acts naturally on the symmetric algebra k[V] of V. We denote by k[V]G the subring of k[V] consisting of all invariant polynomials under this action of G. The following theorem is well known.Theorem 1.1 (Chevalley-Serre, cf. [1, 2, 3]). Assume that p = 0 or (|G|, p) = 1. Then k[V]G is a polynomial ring if and only if G is generated by pseudo-reflections in GL(V).


Sign in / Sign up

Export Citation Format

Share Document