scholarly journals On Schur's conjecture

Author(s):  
Gerhard Turnwald

AbstractWe study polynomials over an integral domainRwhich, for infinitely many prime idealsP, induce a permutation ofR/P. In many cases, every polynomial with this property must be a composition of Dickson polynomials and of linear polynomials with coefficients in the quotient field ofR. In order to find out which of these compositions have the required property we investigate some number theoretic aspects of composition of polynomials. The paper includes a rather elementary proof of ‘Schur's Conjecture’ and contains a quantitative version for polynomials of prime degree.

1961 ◽  
Vol 13 ◽  
pp. 569-586 ◽  
Author(s):  
Eben Matlis

Throughout this discussion R will be an integral domain with quotient field Q and K = Q/R ≠ 0. If A is an R-module, then A is said to be torsion-free (resp. divisible), if for every r ≠ 0 ∈ R the endomorphism of A defined by x → rx, x ∈ A, is a monomorphism (resp. epimorphism). If A is torsion-free, the rank of A is defined to be the dimension over Q of the vector space A ⊗R Q; (we note that a torsion-free R-module of rank one is the same thing as a non-zero R-submodule of Q). A will be said to be indecomposable, if A has no proper, non-zero, direct summands. We shall say that A has D.C.C., if A satisfies the descending chain condition for submodules. By dim R we shall mean the maximal length of a chain of prime ideals in R.


1978 ◽  
Vol 21 (3) ◽  
pp. 373-375 ◽  
Author(s):  
Ira J. Papick

Throughout this note, let R be a (commutative integral) domain with quotient field K. A domain S satisfying R ⊆ S ⊆ K is called an overring of R, and by dimension of a ring we mean Krull dimension. Recall [1] that a commutative ring is said to be coherent if each finitely generated ideal is finitely presented.In [2], as a corollary of a more general theorem, Davis showed that if each overring of a domain R is Noetherian, then the dimension of R is at most 1. (This corollary is the converse of a version of the Krull-Akizuki Theorem [5, Theorem 93], and can also be proved directly by using the existence of valuation rings dominating finite chains of prime ideals [4, Corollary 16.6].) It is our purpose to prove that if R is Noetherian and each overring of R is coherent, then the dimension of £ is at most 1. We shall also indicate some related questions and examples.


2010 ◽  
Vol 09 (01) ◽  
pp. 43-72 ◽  
Author(s):  
PAUL-JEAN CAHEN ◽  
DAVID E. DOBBS ◽  
THOMAS G. LUCAS

A (commutative integral) domain R is said to be valuative if, for each nonzero element u in the quotient field of R, at least one of R ⊆ R[u] and R ⊆ R[u-1] has no proper intermediate rings. Such domains are closely related to valuation domains. If R is a valuative domain, then R has at most three maximal ideals, and at most two if R is not integrally closed. Also, if R is valuative, the set of nonmaximal prime ideals of R is linearly ordered, at most one maximal ideal of R does not contain each nonmaximal prime of R, and RP is a valuation domain for each prime P except for at most one maximal ideal. Any integrally closed valuative domain is a Bézout domain. Valuation domains are characterized as the quasilocal integrally closed valuative domains. Each one-dimensional Prüfer domain with at most three maximal ideals is valuative.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650149 ◽  
Author(s):  
Said El Baghdadi ◽  
Marco Fontana ◽  
Muhammad Zafrullah

Let [Formula: see text] be an integral domain with quotient field [Formula: see text]. Call an overring [Formula: see text] of [Formula: see text] a subring of [Formula: see text] containing [Formula: see text] as a subring. A family [Formula: see text] of overrings of [Formula: see text] is called a defining family of [Formula: see text], if [Formula: see text]. Call an overring [Formula: see text] a sublocalization of [Formula: see text], if [Formula: see text] has a defining family consisting of rings of fractions of [Formula: see text]. Sublocalizations and their intersections exhibit interesting examples of semistar or star operations [D. D. Anderson, Star operations induced by overrings, Comm. Algebra 16 (1988) 2535–2553]. We show as a consequence of our work that domains that are locally finite intersections of Prüfer [Formula: see text]-multiplication (respectively, Mori) sublocalizations turn out to be Prüfer [Formula: see text]-multiplication domains (PvMDs) (respectively, Mori); in particular, for the Mori domain case, we reobtain a special case of Théorème 1 of [J. Querré, Intersections d’anneaux intègers, J. Algebra 43 (1976) 55–60] and Proposition 3.2 of [N. Dessagnes, Intersections d’anneaux de Mori — exemples, Port. Math. 44 (1987) 379–392]. We also show that, more than the finite character of the defining family, it is the finite character of the star operation induced by the defining family that causes the interesting results. As a particular case of this theory, we provide a purely algebraic approach for characterizing P vMDs as a subclass of the class of essential domains (see also Theorem 2.4 of [C. A. Finocchiaro and F. Tartarone, On a topological characterization of Prüfer [Formula: see text]-multiplication domains among essential domains, preprint (2014), arXiv:1410.4037]).


1974 ◽  
Vol 26 (3) ◽  
pp. 532-542 ◽  
Author(s):  
Joe L. Mott

If D is an integral domain with quotient field K, the group of divisibility G(D) of D is the partially ordered group of non-zero principal fractional ideals with aD ≦ bD if and only if aD contains bD. If K* denotes the multiplicative group of K and U(D) the group of units of D, then G(D) is order isomorphic to K*/U(D), where aU(D) ≦ bU(D) if and only if b/a ∊ D.


1978 ◽  
Vol 30 (6) ◽  
pp. 1313-1318 ◽  
Author(s):  
N. H. Vaughan ◽  
R. W. Yeagy

Let D be an integral domain with 1 ≠ 0 . We consider “property SP” in D, which is that every ideal is a product of semiprime ideals. (A semiprime ideal is equal to its radical.) It is natural to consider property SP after studying Dedekind domains, which involve factoring ideals into prime ideals. We prove that a domain D with property SP is almost Dedekind, and we give an example of a nonnoetherian almost Dedekind domain with property SP.


Author(s):  
Robert Gilmer

AbstractSuppose D is an integral domain with quotient field K and that L is an extension field of K. We show in Theorem 4 that if the complete integral closure of D is an intersection of Archimedean valuation domains on K, then the complete integral closure of D in L is an intersection of Archimedean valuation domains on L; this answers a question raised by Gilmer and Heinzer in 1965.


1982 ◽  
Vol 34 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Leslie G. Roberts

Let A be the co-ordinate ring of a reduced curve over a field k. This means that A is an algebra of finite type over k, A has no nilpotent elements, and that if P is a minimal prime ideal of A, then A/P is an integral domain of Krull dimension one. Let M be a maximal ideal of A. Then G(A) (the graded ring of A relative to M) is defined to be . We get the same graded ring if we first localize at M, and then form the graded ring of AM relative to the maximal ideal MAM. That isLet Ā be the integral closure of A. If P1, P2, …, Ps are the minimal primes of A thenwhere A/Pi is a domain and is the integral closure of A/Pi in its quotient field.


1997 ◽  
Vol 40 (1) ◽  
pp. 19-30 ◽  
Author(s):  
A. W. Mason

Let R be a commutative integral domain and let S be its quotient field. The group GL2(R) acts on Ŝ = S ∪ {∞} as a group of linear fractional transformations in the usual way. Let F2(R, z) be the stabilizer of z ∈ Ŝ in GL2(R) and let F2(R) be the subgroup generated by all F2(R, z). Among the subgroups contained in F2(R) are U2(R), the subgroup generated by all unipotent matrices, and NE2(R), the normal subgroup generated by all elementary matrices.We prove a structure theorem for F2(R, z), when R is a Krull domain. A more precise version holds when R is a Dedekind domain. For a large class of arithmetic Dedekind domains it is known that the groups NE2(R),U2(R) and SL2(R) coincide. An example is given for which all these subgroups are distinct.


2012 ◽  
Vol 11 (06) ◽  
pp. 1250112 ◽  
Author(s):  
PAUL-JEAN CAHEN ◽  
DAVID E. DOBBS ◽  
THOMAS G. LUCAS

For a pair of rings S ⊆ T and a nonnegative integer n, an element t ∈ T\S is said to be within n steps of S if there is a saturated chain of rings S = S0 ⊊ S1 ⊊ ⋯ ⊊ Sm = S[t] with length m ≤ n. An integral domain R is said to be n-valuative (respectively, finitely valuative) if for each nonzero element u in its quotient field, at least one of u and u-1 is within n (respectively, finitely many) steps of R. The integral closure of a finitely valuative domain is a Prüfer domain. Moreover, an n-valuative domain has at most 2n + 1 maximal ideals; and an n-valuative domain with 2n + 1 maximal ideals must be a Prüfer domain.


Sign in / Sign up

Export Citation Format

Share Document