scholarly journals Involutions and commutators in orthogonal groups

Author(s):  
Frieder Knüppel ◽  
Gerd Thomsen

AbstractSuppose we are given a regular symmetric bilinear from on a finite-dimensional vector space V over a commutative field K of characteristic ≠ 2. We want to write given elements of the commutator subgroup ω(V) (of the orthogonal group O(V)) and also of the kernel of the spinorial norm ker(Θ) as (short) products of involutions and as products of commutators

1992 ◽  
Vol 44 (5) ◽  
pp. 974-1002 ◽  
Author(s):  
Benedict H. Gross ◽  
Dipendra Prasad

Let k be a local field, with char(k) ≠ 2. A quadratic space V over k is a finite dimensional vector space together with a non-degenerate quadratic form Q: V → k.The special orthogonal group SO(V) consists of all linear maps T: V → V which satisfy:Q(Tv) = Q(v) for all ν and det T = 1.


2002 ◽  
Vol 73 (1) ◽  
pp. 85-96 ◽  
Author(s):  
Christopher Parker ◽  
Peter Rowley

AbstractSuppose that V is a finite dimensional vector space over a finite field of characteristic 2, G is the symplectic group on V and a is a non-zero vector of V. Here we classify irreducible subgroups of G containing a certain subgroup of O2(StabG(a)) all of whose non-trivial elements are 2-transvections.


1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


1961 ◽  
Vol 4 (3) ◽  
pp. 261-264
Author(s):  
Jonathan Wild

Let E be a finite dimensional vector space over an arbitrary field. In E a bilinear form is given. It associates with every sub s pa ce V its right orthogonal sub space V* and its left orthogonal subspace *V. In general we cannot expect that dim V* = dim *V. However this relation will hold in some interesting special cases.


1982 ◽  
Vol 86 ◽  
pp. 229-248 ◽  
Author(s):  
Haruhisa Nakajima

Let k be a field of characteristic p and G a finite subgroup of GL(V) where V is a finite dimensional vector space over k. Then G acts naturally on the symmetric algebra k[V] of V. We denote by k[V]G the subring of k[V] consisting of all invariant polynomials under this action of G. The following theorem is well known.Theorem 1.1 (Chevalley-Serre, cf. [1, 2, 3]). Assume that p = 0 or (|G|, p) = 1. Then k[V]G is a polynomial ring if and only if G is generated by pseudo-reflections in GL(V).


Sign in / Sign up

Export Citation Format

Share Document