Pre-solar grains in meteorites and interplanetary dust: an overview

2006 ◽  
Vol 2 (14) ◽  
pp. 341-344
Author(s):  
Ulrich Ott ◽  
Peter Hoppe

AbstractSmall amounts of pre-solar grains have survived in the matrices of primitive meteorites and interplanetary dust particles. Their detailed study in the laboratory with modern analytical tools provides highly accurate and detailed information with regard to stellar nucleosynthesis and evolution, grain formation in stellar atmospheres, and Galactic Chemical Evolution. Their survival puts constraints on conditions they were exposed to in the interstellar medium and in the Early Solar System.

2019 ◽  
Vol 630 ◽  
pp. A26 ◽  
Author(s):  
T. Mannel ◽  
M. S. Bentley ◽  
P. D. Boakes ◽  
H. Jeszenszky ◽  
P. Ehrenfreund ◽  
...  

Context. The properties of the smallest subunits of cometary dust contain information on their origin and clues to the formation of planetesimals and planets. Compared to interplanetary dust particles or particles collected during the Stardust mission, dust collected in the coma of comet 67P/Churyumov-Gerasimenko (67P) during the Rosetta mission provides a resource of minimally altered material with known origin whose structural properties can be used to further the investigation of the early solar system. Aims. The cometary dust particle morphologies found at comet 67P on the micrometer scale are classified, and their structural analysis is extended to the nanometer scale. Methods. We present a novel method for achieving the highest spatial resolution of imaging obtained with the MIDAS Atomic Force Microscope on board Rosetta. 3D topographic images with resolutions down to 8 nm were analyzed to determine the subunit sizes of particles on the nanometer scale. Results. Three morphological classes can be determined: (i) fragile agglomerate particles of sizes larger than about 10 μm comprised of micrometer-sized subunits that may themselves be aggregates and show a moderate packing density on the surface of the particles. (ii) A fragile agglomerate with a size of about a few tens of micrometers comprised of micrometer-sized subunits that are suggested to be aggregates themselves and are arranged in a structure with a fractal dimension lower than two. (iii) Small micrometer-sized particles comprised of subunits in the size range of hundreds of nanometers that show surface features that are again suggested to represent subunits. Their differential size distributions follow a log-normal distribution with means of about 100 nm and standard deviations between 20 and 35 nm. Conclusions. The properties of the dust particles found by MIDAS represent an extension of the dust results of Rosetta to the micro- and nanometer scale. All micrometer-sized particles are hierarchical dust agglomerates of smaller subunits. The arrangement, appearance, and size distribution of the smallest determined surface features are reminiscent of those found in chondritic porous interplanetary dust particles. They represent the smallest directly detected subunits of comet 67P.


1997 ◽  
Vol 161 ◽  
pp. 149-155 ◽  
Author(s):  
Harold M. Butner ◽  
Helen J. Walker ◽  
Diane H. Wooden ◽  
Fred C. Witteborn

AbstractTo assess the physical conditions in our early solar system, we have to study the disks around other stars.βPic is a main sequence star surrounded by a large dust disk,βPic’s mid-infrared spectrum bears a striking resemblance to the silicate emission seen in some cometary spectra. We have selected a sample of main-sequence stars with similar IRAS properties to those ofβPic and undertaken a systematic survey of their physical properties. We obtained mid-infrared spectra covering the range 8 to 13μm at a resolution of 200 in June 1995. We report on the wide variety of silicate emission features we see and compare to the spectra reported for many different interstellar and interplanetary sources. Even among our small sample of stars, we find examples of silicate emission features that bear a striking similarity to those seen in the spectra of some comets like P/Halley and P/Bradfield 1987. These spectra also resemble the laboratory spectra of Interplanetary Dust Particles (IDPs).


2000 ◽  
Vol 197 ◽  
pp. 527-536
Author(s):  
S. Messenger

Meteorites and interplanetary dust particles (IDPs) are primitive solar system materials which contain preserved nebular condensates, circumstellar dust grains and partially preserved molecular cloud matter. The circumstellar dust grains found in meteorites are direct samples of a variety of stars, and provide detailed constraints on models of stellar nucleosynthesis. Hydrogen and nitrogen isotopic anomalies in organic matter in meteorites and IDPs are thought to originate from chemical processes in a presolar molecular cloud. This material is better preserved, but less well characterized among IDPs.


2006 ◽  
Vol 2 (14) ◽  
pp. 353-356 ◽  
Author(s):  
Gary R. Huss ◽  
Bruce T. Draine

AbstractSeveral types of pre-solar grains, grains that existed prior to solar system formation, have been found in the fine-grained components of primitive meteorites, interplanetary dust particles (IDPs), and comet samples. Known pre-solar components have isotopic compositions that reflect formation from the ejecta of evolved stars. Other pre-solar materials may have isotopic compositions very similar to solar system materials, making their identification as pre-solar grains problematic. Pre-solar materials exhibit a range of chemical and thermal resistance, so their relative abundances can be used to probe the conditions in the solar nebula. Detailed information on the relative abundances of pre-solar and solar-system materials can provide information on the temperatures, radiation environment, and degree of radial mixing in the early solar system.


2012 ◽  
Vol 10 (H16) ◽  
pp. 174-175
Author(s):  
A. S. Guliyev ◽  
U. J. Poladova

Possibility of disintegration of proto-comet nucleus of sungraser comets in three zones of Solar System predicted by one of authors is considered. Testing of parameters of 118 split comets confirms the basic idea. Results of the statistical analysis of comet outbursts gave us additional argument in favor of this assumption. Almost twenty years have passed since, as a result of the search for host phases of isotopically unusual noble gases, the first discovery in 1987 of surviving pre-solar minerals (diamond and silicon carbide) in primitive meteorites. These were followed by others (graphite, refractory oxides, silicon nitride, and finally silicates) in the years since. Pre-solar grains occur in even higher abundance than in meteorites in interplanetary dust particles (IDPs). The result is a kind of ‘new astronomy’ based on the study of pre-solar condensates with all the methods available in modern analytical laboratories.


2018 ◽  
Author(s):  
Katherine Burgess ◽  
◽  
David Bour ◽  
Rhonda M. Stroud ◽  
Anais Bardyn ◽  
...  

1985 ◽  
Vol 85 ◽  
pp. 365-368
Author(s):  
S. Ibadov

AbstractThe intensity of solar X-radiation scattered by a comet is calculated and compared to the proper X-radiation of the comet due to impacts of cometary and interplanetary dust particles. Detection of X-radiation of dusty comets at small heliocentric distances (R ≤ 1 a.u.) is found to be an indicator of high-temperature plasma generation as result of grain collisions.


Sign in / Sign up

Export Citation Format

Share Document