temperature plasma
Recently Published Documents





2022 ◽  
Vol 1 (1) ◽  
pp. 3-13
Sergei Fadeev ◽  
Linar Shaidullin ◽  
Anvar Kadirmetov

In order to technological use in the preparation and application of plasma coatings, the mutual influence of acoustic impact on low-temperature plasma was conducted, the experimental methodology and the results of the study in the pipe at the resonant excitation frequency are given. The nonlinearity of sound oscillations was found and their amplification by increasing the pressure, which can be used to intensify the processes of plasma coatings.

Shuya ASADA ◽  
Akihisa OGINO

Abstract The aim of this study is to form the sulfur defects on monolayer molybdenum disulfide (MoS2) by low temperature microwave plasma treatment suppressing disturbance of molecular structure. CVD-grown and plasma treated multilayer MoS2 surface were analyzed to investigate the effects of H2 and Ar plasma treatment on sulfur defects and molecular structure. It was found that the disturbance of molecular structure was suppressed in the H2 plasma treatment compared to the Ar plasma treatment. Varying the incident ratio of hydrogen ions H+ and radicals H*, the influences of H2 plasma treatment with high and low H*/H+ ratio on monolayer MoS2 structure were discussed. As a result of X-ray photoelectron spectroscopy, Raman spectroscopy and photoluminescence analysis, sulfur defects increased with the increase in total amount of radical incident on MoS2. In addition, it is speculated that the etching with radical contributed to form sulfur defects suppressing the disturbance of molecular structure.

2022 ◽  

Abstract The full text of this preprint has been withdrawn by the authors due to author disagreement with the posting of the preprint. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.

2022 ◽  
Rupali Sahu ◽  
Albina Tropina ◽  
Richard B. Miles

2022 ◽  
Vol 10 (1) ◽  
pp. 94
Fei Yu ◽  
Min Zhang ◽  
Junfeng Sun ◽  
Fang Wang ◽  
Xiangfei Li ◽  

To improve the screening efficiency of high-yield neomycin sulfate (NM) Streptomyces fradiae strains after mutagenesis, a high-throughput screening method using streptomycin resistance prescreening (8 μg/mL) and a 24-deep well plates/microplate reader (trypan blue spectrophotometry) rescreening strategy was developed. Using this approach, we identified a high-producing NM mutant strain, Sf6-2, via six rounds of atmospheric and room temperature plasma (ARTP) mutagenesis and screening. The mutant displayed a NM potency of 7780 ± 110 U/mL and remarkably stable genetic properties over six generations. Furthermore, the key components (soluble starch, peptone, and (NH4)2SO4) affecting NM potency in fermentation medium were selected using Plackett-Burman and optimized by Box-Behnken designs. Finally, the NM potency of Sf6-2 was increased to 10,849 ± 141 U/mL at the optimal concentration of each factor (73.98 g/L, 9.23 g/L, and 5.99 g/L, respectively), and it exhibited about a 40% and 100% enhancement when compared with before optimization conditions and the wild-type strain, respectively. In this study, we provide a new S. fradiae NM production strategy and generate valuable insights for the breeding and screening of other microorganisms.

2021 ◽  
Vol 12 (1) ◽  
pp. 356
Song Zhang ◽  
Baihan Chen ◽  
Dawei Liu ◽  
Hongxiang Chen

Improving the transdermal delivery efficiency of medicine is a crucial measure to improve the treatment efficiency of psoriasis. This paper developed a low-cost, highly active, and large-action-area low-temperature plasma (LTP) jet array. The two components of plasma—the high concentration of reactive oxygen and nitrogen species and the strong electric field—easily changed the structural integrity of the stratum corneum, which enhanced the transdermal delivery of the medicine. Tripterygium wilfordii Hook F (TwHF) is a medicine used to treat autoimmune and inflammatory conditions. The enhanced transdermal delivery of TwHF significantly alleviated the severed psoriasiform dermatitis induced by the imiquimod. Unlike the TwHF treatment alone, the LTP + TwHF treatment was more efficient at suppressing epidermal thickening and inhibiting systemic inflammation without noticeable side effects. LTP + TwHF treatment provides a potential new solution for psoriasis treatment.

Sign in / Sign up

Export Citation Format

Share Document