scholarly journals Discovery of polarized 6.7-GHz methanol masers in DR21/W75

2007 ◽  
Vol 3 (S242) ◽  
pp. 154-155
Author(s):  
L. Harvey-Smith ◽  
R. Soria-Ruiz ◽  
A. Duarte-Cabral ◽  
R. J. Cohen

AbstractWe present the first images of 6.7 GHz methanol masers in the DR21 star-forming complex. We have discovered two sites of Class II methanol maser emission; in DR21(OH) and DR21(OH)N. The emission comprises clusters of linearly extended masers which have velocity gradients along their length. There are four maser spots in DR21(OH)N, some of which show a small fraction of linear polarization. The twelve masers in DR21(OH) lie in a linear arrangement stretching approximately 0.7 arcseconds and show no significant linear polarization. We were not able to detect any circular polarization in the masers.

2007 ◽  
Vol 3 (S242) ◽  
pp. 125-129
Author(s):  
S. N. Longmore ◽  
M. G. Burton ◽  
P. J. Barnes ◽  
T. Wong ◽  
C. R. Purcell ◽  
...  

AbstractMethanol maser emission has proven to be an excellent signpost of regions undergoing massive star formation (MSF). To investigate their role as an evolutionary tracer, we have recently completed a large observing program with the ATCA to derive the dynamical and physical properties of molecular/ionised gas towards a sample of MSF regions traced by 6.7GHz methanol maser emission. We find that the molecular gas in many of these regions breaks up into multiple sub-clumps which we separate into groups based on their association with/without methanol maser and cm continuum emission. The temperature and dynamic state of the molecular gas is markedly different between the groups. Based on these differences, we attempt to assess the evolutionary state of the cores in the groups and thus investigate the role of class II methanol masers as a tracer of MSF.


2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.


2002 ◽  
Vol 206 ◽  
pp. 151-154 ◽  
Author(s):  
Simon Ellingsen

The Australia Telescope Compact Array (ATCA) has been used to make the first full polarization observations of 6.7 GHz methanol masers. Linear polarization was detected towards all four sources observed, at levels between a few and 10%, while none of the sources show circular polarization stronger than approximately 1.5%. Linear polarization appears to be more common in the 6.7 GHz methanol maser transition than it is for the 12.2 GHz transition, consistent with the hypothesis that the 6.7 GHz masers are more saturated.


2012 ◽  
Vol 8 (S287) ◽  
pp. 133-140
Author(s):  
S. E. Kurtz

AbstractClass I 44 GHz methanol masers are not as well-known, as common, or as bright as their more famous Class II cousins at 6.7 and 12.2 GHz. Nevertheless, the 44 GHz masers are commonly found in high-mass star forming regions. At times they appear to trace dynamically important phenomena; at other times they show no obvious link to the star formation process. Here, we summarize the major observational efforts to date, including both dedicated surveys and collateral observations. The principal results are presented, some that were expected, and others that were unexpected.


2002 ◽  
Vol 206 ◽  
pp. 167-170
Author(s):  
Irina E. Val'tts ◽  
Stella Yu. Lyubchenko

In the star forming region W48 the spectrum of methanol lines is studied. It is found that the intensity of the 20 − 3−1E (12.2 GHz) line anti-correlates with the intensity of the 51-60A+ (6.7 GHz). All other class II methanol lines in the spectrum of W48 (21 − 30A+ (157 GHz), 31 − 40A+ (107 GHz) (possibly) and J0 - J−1E (157 GHz)) demonstrate the same behaviour as 20 − 3−1E (12.2 GHz) line. This fact contradicts to the current models of the class II methanol maser emission. The effect is confirmed in the sample of 67 sources. For the explanation of this fact some possibilities are considered.


2017 ◽  
Vol 13 (S336) ◽  
pp. 317-318
Author(s):  
Nichol Cunningham ◽  
Gary Fuller ◽  
Adam Avison ◽  
Shari Breen

AbstractWe present the initial results from a class I 44-GHz methanol maser follow-up survey, observed with the MOPRA telescope, towards 272 sources from the Methanol Multi-beam survey (MMB). Over half (∼60%) of the 6.7 GHz class II MMB maser sources are associated with a class I 44-GHz methanol maser at a greater than 5σ detection level. We find that class II MMB masers sources with an associated class I methanol maser have stronger peak fluxes compared to regions without an associated class I maser. Furthermore, as part of the MOPRA follow-up observations we simultaneously observed SiO emission which is a known tracer of shocks and outflows in massive star forming regions. The presence of SiO emission, and potentially outflows, is found to be strongly associated with the detection of class I maser emission in these regions.


2019 ◽  
Vol 489 (3) ◽  
pp. 3981-3989 ◽  
Author(s):  
G C MacLeod ◽  
K Sugiyama ◽  
T R Hunter ◽  
J Quick ◽  
W Baan ◽  
...  

ABSTRACT We report the detection of new 12.178, 12.229, 20.347, and 23.121 GHz methanol masers in the massive star-forming region G358.93−0.03, which are flaring on similarly short time-scales (days) as the 6.668 GHz methanol masers also associated with this source. The brightest 12.178 GHz channel increased by a factor of over 700 in just 50 d. The masers found in the 12.229 and 20.347 GHz methanol transitions are the first ever reported and this is only the fourth object to exhibit associated 23.121 GHz methanol masers. The 12.178 GHz methanol maser emission appears to have a higher flux density than that of the 6.668 GHz emission, which is unusual. No associated near-infrared flare counterpart was found, suggesting that the energy source of the flare is deeply embedded.


2017 ◽  
Vol 13 (S336) ◽  
pp. 105-108
Author(s):  
Tiege P. McCarthy ◽  
Simon P. Ellingsen ◽  
Xi Chen ◽  
Shari L. Breen ◽  
Maxim A. Voronkov ◽  
...  

AbstractWe have detected maser emission from the 36.2 GHz (4−1 → 30E) methanol transition towards NGC 4945. This emission has been observed in two separate epochs and is approximately five orders of magnitude more luminous than typical emission from this transition within our Galaxy. NGC 4945 is only the fourth extragalactic source observed hosting class I methanol maser emission. Extragalactic class I methanol masers do not appear to be simply highly-luminous variants of their galactic counterparts and instead appear to trace large-scale regions where low-velocity shocks are present in molecular gas.


2020 ◽  
Vol 493 (2) ◽  
pp. 2015-2041 ◽  
Author(s):  
B M Jones ◽  
G A Fuller ◽  
S L Breen ◽  
A Avison ◽  
J A Green ◽  
...  

ABSTRACT The Methanol MultiBeam survey (MMB) provides the most complete sample of Galactic massive young stellar objects (MYSOs) hosting 6.7 GHz class II methanol masers. We characterize the properties of these maser sources using dust emission detected by the Herschel Infrared Galactic Plane Survey (Hi-GAL) to assess their evolutionary state. Associating 731 (73 per cent) of MMB sources with compact emission at four Hi-GAL wavelengths, we derive clump properties and define the requirements of an MYSO to host a 6.7 GHz maser. The median far-infrared (FIR) mass and luminosity are 630 M⊙ and 2500 L⊙ for sources on the near side of Galactic centre and 3200 M⊙ and 10000 L⊙ for more distant sources. The median luminosity-to-mass ratio is similar for both at ∼4.2 L⊙  M⊙−1. We identify an apparent minimum 70 μm luminosity required to sustain a methanol maser of a given luminosity (with $L_{70} \propto L_{6.7}\, ^{0.6}$). The maser host clumps have higher mass and higher FIR luminosities than the general Galactic population of protostellar MYSOs. Using principal component analysis, we find 896 protostellar clumps satisfy the requirements to host a methanol maser but lack a detection in the MMB. Finding a 70 μm flux density deficiency in these objects, we favour the scenario in which these objects are evolved beyond the age where a luminous 6.7 GHz maser can be sustained. Finally, segregation by association with secondary maser species identifies evolutionary differences within the population of 6.7GHz sources.


2002 ◽  
Vol 46 (4) ◽  
pp. 293-308
Author(s):  
I. V. Val’tts ◽  
S. Yu. Lyubchenko
Keyword(s):  
Class Ii ◽  

Sign in / Sign up

Export Citation Format

Share Document