young stellar objects
Recently Published Documents


TOTAL DOCUMENTS

980
(FIVE YEARS 151)

H-INDEX

70
(FIVE YEARS 7)

2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Lynne A. Hillenbrand ◽  
Antonio C. Rodriguez

Abstract Disks around young stellar objects (YSOs) consist of material that thermally emits the energy provided by a combination of passive heating from the central star, and active, viscous heating due to mass accretion. FU Ori stars are YSOs with substantially enhanced accretion rates in their inner disk regions. As a disk transitions from standard low-state, to FU Ori-like high-state accretion, the outburst manifests through photometric brightening over a broad range of wavelengths. We present results for the expected amplitudes of the brightening between ∼4000 Å and 8 μm—the wavelength range where FU Ori type outburst events are most commonly detected. Our model consists of an optically thick passive + active steady-state accretion disk with low and high accretion states.


2022 ◽  
Vol 258 (1) ◽  
pp. 19
Author(s):  
Shi-Min Song ◽  
Xi Chen ◽  
Zhi-Qiang Shen ◽  
Bin Li ◽  
Kai Yang ◽  
...  

Abstract We report a new survey of the 12.2 GHz Class II methanol masers toward a sample of 367 sources with the 6.7 GHz methanol masers conducted with the Shanghai 65 m Tianma Radio Telescope. This sample has been previously made with observations of the radio continuum emission of UC H ii regions by the VLA. A total of 176 sources were detected with the 12.2 GHz methanol maser, with a detection rate of 48%, including 8 new detections. A lower detection rate (<10%) was determined toward the sources in the Galactic longitude ranges of 60°–180°, revealing that the physical environments from those sources in the Local arm or the tails of Galactic arms do not easily excite the 12.2 GHz masers. In addition, two detections of highly excited-state OH masers at the 13.4 GHz transition were made, one of which is a new detection. Compared to previous surveys, one-third of the detected 12.2 GHz masers show considerable flux variations, implying the possible changes of their physical environments associated with variable radiation fields from their host high-mass young stellar objects. A positive log–log correlation is found between the luminosities of the 6.7 and 12.2 GHz masers in our observed sample, suggesting that both the transition masers have similar excitation conditions. The statistical analysis for the relationships between the methanol maser luminosity and UC H ii region spatial size indicates that the maser luminosities of both the 6.7 and 12.2 GHz transitions have a decreasing trend with the spatial sizes of the associated UC H ii regions, indicating that the Class II methanol masers might fade away with the H ii region evolution.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2433
Author(s):  
Evgeni Semkov ◽  
Sunay Ibryamov ◽  
Stoyanka Peneva

At the time of stellar evolution, young stellar objects go through processes of increased activity and instability. Star formation takes place in several stages during which the star accumulates enough mass to initiate thermonuclear reactions in the nucleus. A significant percentage of the mass of Sun-like stars accumulates during periods of increased accretion known as FUor outbursts. Since we know only about two dozen stars of this type, the study of each new object is very important for our knowledge. In this paper, we present data from photometric monitoring on a FUor object V2493 Cyg discovered in 2010. Our data were obtained in the optical region with BVRI Johnson–Cousins set of filters during the period from November 2016 to February 2021. The results of our observations show that during this period no significant changes in the brightness of the star were registered. We only detect variations with a small amplitude around the maximum brightness value. Thus, since 2013 V2493 Cyg remains at its maximum brightness, without a decrease in brightness. Such photometric behavior is not typical of other stars from FUor type. Usually, the light curves of FUors are asymmetrical, with a very rapid rise and gradual decline of the brightness. V2493 Cyg remains unique in this respect with a very rapid rise in brightness and prolonged retention in maximum light. Our period analysis made for the interval February 2013–February 2021 reveals a well-defined period of 914 ± 10 days. Such periodicity can be explained by dust structures remaining from star formation in orbit around the star.


2021 ◽  
pp. 14-30
Author(s):  
Raymond T. Pierrehumbert

‘Creation revealed’ examines key observations on planetary systems. Astronomers at first could probe the Universe only through the medium of visible light. In the early 1600s, the invention of the telescope allowed the Universe to be observed in much greater detail. With the discovery of ‘heat rays’, the seeds of infrared astronomy were planted. Meanwhile, throughout the course of the nineteenth century, one of the grandest unifications in physics was accomplished. It was discovered that the forces of electricity and magnetism were in fact different aspects of the same phenomenon: electromagnetism. Other important topics include blackbody radiation; infrared observations of young stellar objects; and the Atacama Large Millimeter/Submillimeter Array (ALMA).


Author(s):  
Guillaume Laibe ◽  
Maxime Lombart

Abstract Evolving the size distribution of solid aggregates challenges simulations of young stellar objects. Among other difficulties, generic formulae for stability conditions of explicit solvers provide severe constrains when integrating the coagulation equation for astrophysical objects. Recent numerical experiments have recently reported that these generic conditions may be much too stringent. By analysing the coagulation equation in the Laplace space, we explain why this is indeed the case and provide a novel stability condition which avoids time over-sampling.


2021 ◽  
Vol 923 (1) ◽  
pp. 25
Author(s):  
S. K. Betti ◽  
R. Gutermuth ◽  
S. Offner ◽  
G. Wilson ◽  
A. Sokol ◽  
...  

Abstract We use hydrodynamical simulations of star-forming gas with stellar feedback and sink particles—proxies for young stellar objects (YSOs)—to produce and analyze synthetic 1.1 mm continuum observations at different distances (150–1000 pc) and ages (0.49–1.27 Myr). We characterize how the inferred core properties, including mass, size, and clustering with respect to diffuse natal gas structure, change with distance, cloud evolution, and the presence of YSOs. We find that atmospheric filtering and core segmentation treatments have distance-dependent impacts on the resulting core properties for d < 300 pc and 500 pc, respectively, which dominate over evolutionary differences. Concentrating on synthetic observations at further distances (650–1000 pc), we find a growing separation between the inferred sizes and masses of cores with and without YSOs in the simulations, which is not seen in recent observations of the Monoceros R2 (Mon R2) cloud at 860 pc. We find that the synthetic cores cluster in smaller groups, and that their mass densities are correlated with gas column density over a much narrower range, than those in the Mon R2 observations. Such differences limit the applicability of the evolutionary predictions we report here, but will motivate our future efforts to adapt our synthetic observation and analysis framework to next generation simulations, such as Star Formation in Gaseous Environments (STARFORGE). These predictions and systematic characterizations will help to guide the analysis of cores on the upcoming TolTEC Clouds to Cores Legacy Survey on the Large Millimeter Telescope Alfonso Serrano.


2021 ◽  
Vol 923 (2) ◽  
pp. 263
Author(s):  
A. P. M. Towner ◽  
C. L. Brogan ◽  
T. R. Hunter ◽  
C. J. Cyganowski

Abstract We have observed a sample of nine Extended Green Objects (EGOs) at 1.3 and 5 cm with the Very Large Array (VLA) with subarcsecond resolution and ∼7–14 μJy beam−1-sensitivities in order to characterize centimeter continuum emission as it first appears in these massive protoclusters. We find an EGO-associated continu um emission—within 1″ of the extended 4.5 μm emission—in every field, which is typically faint (order 101–102 μJy) and compact (unresolved at 0″.3–0″.5). The derived spectral indices of our 36 total detections are consistent with a wide array of physical processes, including both non-thermal (19% of detections) and thermal free–free processes (e.g., ionized jets and compact H ii regions, 78% of sample) and warm dust (1 source). We also find an EGO-associated 6.7 GHz CH3OH and 22 GHz H2O maser emission in 100% of the sample and a NH3 (3,3) masers in ∼45%; we do not detect any NH3 (6,6) masers at ∼5.6 mJy beam−1 sensitivity. We find statistically-significant correlations between L radio and L bol at two physical scales and three frequencies, consistent with thermal emission from ionized jets, but no correlation between L H 2 O and L radio for our sample. From these data, we conclude that EGOs likely host multiple different centimeter continuum-producing processes simultaneously. Additionally, at our ∼1000 au resolution, we find that all EGOs except G18.89−0.47 contain 1 ∼ 2 massive sources based on the presence of CH3OH maser groups, which is consistent with our previous work suggesting that these are typical massive protoclusters, in which only one to a few of the young stellar objects are massive.


2021 ◽  
Vol 162 (6) ◽  
pp. 279
Author(s):  
Steven M. Silverberg ◽  
Hans Moritz Günther ◽  
Jinyoung Serena Kim ◽  
David A. Principe ◽  
Scott J. Wolk

Abstract Empirically, the estimated lifetime of a typical protoplanetary disk is <5–10 Myr. However, the disk lifetimes required to produce a variety of observed exoplanetary systems may exceed this timescale. Some hypothesize that this inconsistency is due to estimating disk fractions at the cores of clusters, where radiation fields external to a star–disk system can photoevaporate the disk. To test this, we have observed a field on the western outskirts of the IC 1396 star-forming region with XMM-Newton to identify new Class III YSO cluster members. Our X-ray sample is complete for YSOs down to 1.8 M ⊙. We use a subset of these X-ray sources that have near- and mid-infrared counterparts to determine the disk fraction for this field. We find that the fraction of X-ray-detected cluster members that host disks in the field we observe is 17 − 7 + 10 % (1σ), comparable with the 29 − 3 + 4 % found in an adjacent field centered on the cometary globule IC 1396A. We reevaluate YSO identifications in the IC 1396A field using Gaia parallaxes compared to previous color-cut-only identifications, finding that incorporating independent distance measurements provides key additional constraints. Given the existence of at least one massive star producing an external radiation field in the cluster core, the lack of a statistically significant difference in disk fraction in each observed field suggests that disk lifetimes remain consistent as a function of distance from the cluster core.


2021 ◽  
Vol 922 (2) ◽  
pp. 152
Author(s):  
Kotomi Taniguchi ◽  
Liton Majumdar ◽  
Adele Plunkett ◽  
Shigehisa Takakuwa ◽  
Dariusz C. Lis ◽  
...  

Abstract We have analyzed Atacama Large Millimeter/submillimeter Array Cycle 4 Band 6 data toward two young stellar objects (YSOs), Oph-emb5 and Oph-emb9, in the Ophiuchus star-forming region. The YSO Oph-emb5 is located in a relatively quiescent region, whereas Oph-emb9 is irradiated by a nearby bright Herbig Be star. Molecular lines from cyclic-C3H2 (c-C3H2), H2CO, CH3OH, 13CO, C18O, and DCO+ have been detected from both sources, while DCN is detected only in Oph-emb9. Around Oph-emb5, c-C3H2 is enhanced at the west side, relative to the IR source, whereas H2CO and CH3OH are abundant at the east side. In the field of Oph-emb9, moment 0 maps of the c-C3H2 lines show a peak at the eastern edge of the field of view, which is irradiated by the Herbig Be star. Moment 0 maps of CH3OH and H2CO show peaks farther from the bright star. We derive the N(c-C3H2)/N(CH3OH) column density ratios at the peak positions of c-C3H2 and CH3OH near each YSO, which are identified based on their moment 0 maps. The N(c-C3H2)/N(CH3OH) ratio at the c-C3H2 peak is significantly higher than at the CH3OH peak by a factor of ∼19 in Oph-emb9, while the difference in this column density ratio between these two positions is a factor of ∼2.6 in Oph-emb5. These differences are attributed to the efficiency of the photon-dominated region chemistry in Oph-emb9. The higher DCO+ column density and the detection of DCN in Oph-emb9 are also discussed in the context of UV irradiation flux.


2021 ◽  
Vol 162 (6) ◽  
pp. 236
Author(s):  
Abby Mintz ◽  
Joseph L. Hora ◽  
Elaine Winston

Sign in / Sign up

Export Citation Format

Share Document