scholarly journals Ultra-soft Sources as Type Ia Supernovae Progenitors

2011 ◽  
Vol 7 (S281) ◽  
pp. 136-139
Author(s):  
Kelly Lepo ◽  
Marten van Kerkwijk

AbstractMissing from the usual considerations of nuclear burning white dwarfs as Type Ia supernovae progenitors are systems with very higher mass transfer rates, where more material than is needed for steady burning accretes on the white dwarf. This will expand the photosphere of the white dwarf, causing it to emit at longer wavelengths. Thus, we propose the name ultra-soft source (USS) for these objects.We present a VLT/FLAMES survey looking for USSs in the SMC, selected to be bright in the far UV and with blue far UV-V colors. While we find some unusual objects, and recover known planetary nebulae and WR stars, we detect no objects with strong He II lines, which should be a signature of USSs. This null result either puts an upper limit on the number of USSs in the SMC, or shows that we do not understand what the optical spectra of such objects will look like.We also discuss the unusual LMC [WN] planetary nebula LMC N66 as a possible example of a USS. It has a luminosity consistent with that expected, and its spectra show incompletely CNO-processed material — strong helium lines, some hydrogen, enhanced nitrogen and depleted carbon. It also shows periodic outbursts. USSs may resemble N66 in quiescence. However, it lacks a FUV excess, contrary to our predictions.

1992 ◽  
Vol 151 ◽  
pp. 225-234
Author(s):  
J. Craig Wheeler

Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.


2020 ◽  
Vol 501 (1) ◽  
pp. L23-L27
Author(s):  
E Brooker ◽  
T Plewa ◽  
D Fenn

ABSTRACT Our aim in this work is to identify and explain the necessary conditions required for an energetic explosion of a Chandrasekhar-mass white dwarf. We construct and analyse weakly compressible turbulence models with nuclear burning effects for carbon/oxygen plasma at a density expected for the deflagration-to-detonation transition (DDT) to occur. We observe the formation of carbon deflagrations and transient carbon detonations at early times. As turbulence becomes increasingly inhomogeneous, sustained carbon detonations are initiated by the Zel’dovich reactivity gradient mechanism. The fuel is suitably preconditioned by the action of compressive turbulent modes with wavelength comparable to the size of resolved turbulent eddies; no acoustic wave is involved in this process. Oxygen detonations are initiated, aided either by reactivity gradients or by collisions of carbon detonations. The observed evolutionary time-scales are found to be sufficiently short for the above process to occur in the expanding, centrally ignited massive white dwarf. The inhomogeneous conditions produced prior to the DDT might be of consequence for the chemical composition of the outer ejecta regions of Type Ia supernovae from the single degenerate channel, and offer the potential for validation of the proposed model.


2007 ◽  
Vol 657 (1) ◽  
pp. 76-94 ◽  
Author(s):  
John J. Feldmeier ◽  
George H. Jacoby ◽  
M. M. Phillips

2004 ◽  
Vol 194 ◽  
pp. 111-112
Author(s):  
Lilia Ferrario

AbstractI argue that the observational evidence for white dwarf-white dwarf mergers supports the view that they give rise to ultra-massive white dwarfs or neutron stars through accretion induced collapse. The implications for the progenitors of Type Ia SNe are discussed.


2011 ◽  
Vol 7 (S281) ◽  
pp. 162-165 ◽  
Author(s):  
J. Mikołajewska

AbstractSymbiotic stars are interacting binaries in which the first-formed white dwarf accretes and burns material from a red giant companion. This paper aims at presenting physical characteristics of these objects and discussing their possible link with progenitors of Type Ia supernovae.


2019 ◽  
Vol 490 (2) ◽  
pp. 2430-2435 ◽  
Author(s):  
Noam Soker

ABSTRACT I study the rate of Type Ia supernovae (SNe Ia) within about a million years after the assumed common envelope evolution (CEE) that forms the progenitors of these SNe Ia, and find that the population of SNe Ia with short CEE to explosion delay (CEED) time is ≈few × 0.1 of all SNe Ia. I also claim for an expression for the rate of these SNe Ia that occur at short times after the CEE ($t_{\rm CEED} \lesssim 10^6 {~\rm yr}$), which is different from that of the delay time distribution (DTD) billions of years after star formation. This tentatively hints that the physical processes that determine the short CEED time distribution (CEEDTD) are different (at least to some extent) from those that determine the DTD at billions of years. To reach these conclusions I examine SNe Ia that interact with a circumstellar matter (CSM) within months after explosion, so-called SNe Ia-CSM, and the rate of SNe Ia that on a time-scale of tens to hundreds of years interact with a CSM that might have been a planetary nebula, so-called SNe Ia inside a planetary nebula (SNIPs). I assume that the CSM in these populations results from a CEE, and hence this study is relevant mainly to the core-degenerate (CD) scenario, the double-degenerate (DD) scenario, the double-detonation (DDet) scenario with white dwarf companions, and to the CEE-wind channel of the single-degenerate (SD) scenario.


2004 ◽  
Vol 215 ◽  
pp. 571-572 ◽  
Author(s):  
S.-C. Yoon ◽  
N. Langer

Classical studies of accreting white dwarfs have assumed spherical symmetry. However, it is believed that in close binary systems the transfered matter carries angular momentum to spin up the accreting star. Here, we present preliminary results of CO white dwarf models which accrete helium rich matter with effects of rotation considered, in the context of the Sub-Chandrasekhar mass scenario for Type Ia supernovae.


Sign in / Sign up

Export Citation Format

Share Document