short times
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 60)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Vol 931 ◽  
Author(s):  
Herbert E. Huppert ◽  
Vitaly A. Kuzkin ◽  
Svetlana O. Kraeva

Previous analyses of the flow of low-Reynolds-number, viscous gravity currents down inclined planes are investigated further and extended. Particular emphasis is on the motion of the fluid front and tail, which previous analyses treated somewhat cavalierly. We obtain reliable, approximate, analytic solutions in these regions, the accuracies of which are satisfactorily tested against our numerical evaluations. The solutions show that the flow has several time scales determined by the inclination angle, $\alpha$ . At short times, the influence of initial and boundary conditions is important and the flow is governed by both the pressure gradient and the direct action of gravity due to inclination. Later on, the areas where the boundary conditions are important shrink. This fact explains why previous solutions, being inaccurate near the front and the tail, described experimental data with high accuracy. At larger times, of the order of $\alpha ^{-5/2}$ , the influence of the pressure gradient may be neglected and the fluid profile converges to the square-root shape predicted in previous works. Important extensions of our approach are also outlined.


2021 ◽  
Vol 5 (4) ◽  
pp. 49
Author(s):  
Ehsan Ganji-Azad ◽  
Aliyar Javadi ◽  
Moein Jahanbani Veshareh ◽  
Shahab Ayatollahi ◽  
Reinhard Miller

For microbial enhanced oil recovery (MEOR), different mechanisms have been introduced. In some of these papers, the phenomena and mechanisms related to biosurfactants produced by certain microorganisms were discussed, while others studied the direct impacts of the properties of microorganisms on the related mechanisms. However, there are only very few papers dealing with the direct impacts of microorganisms on interfacial properties. In the present work, the interfacial properties of three bacteria MJ02 (Bacillus Subtilis type), MJ03 (Pseudomonas Aeruginosa type), and RAG1 (Acinetobacter Calcoaceticus type) with the hydrophobicity factors 2, 34, and 79% were studied, along with their direct impact on the water/heptane interfacial tension (IFT), dilational interfacial visco-elasticity, and emulsion stability. A relationship between the adsorption dynamics and IFT reduction with the hydrophobicity of the bacteria cells is found. The cells with highest hydrophobicity (79%) exhibit a very fast dynamic of adsorption and lead to relatively large interfacial elasticity values at short adsorption time. The maximum elasticity values (at the studied frequencies) are observed for bacteria cells with the intermediate hydrophobicity factor (34%); however, at longer adsorption times. The emulsification studies show that among the three bacteria, just RAG1 provides a good capability to stabilize crude oil in brine emulsions, which correlates with the observed fast dynamics of adsorption and high elasticity values at short times. The salinity of the aqueous phase is also discussed as an important factor for the emulsion formation and stabilization.


Toxics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 302
Author(s):  
A. Dallas Wait

Spilled mineral oils in the marine environment pose a number of challenges to sampling and analysis. Mineral oils are complex assemblages of hydrocarbons and additives, the composition of which can vary considerably depending on the source oil and product specifications. Further, the marine microbial and chemical environment can be harsh and variable over short times and distances, producing a rigorous source of hydrocarbon degradation of a mineral oil assemblage. Researchers must ensure that any measurements used to determine the nature and extent of the oil release, the fate and transport of the mineral oil constituents, and any resultant toxicological effects are derived using representative data that adhere to the study’s data quality objectives (DQOs). The purpose of this paper is to provide guidance for crafting obtainable DQOs and provide insights into producing reliable results that properly underpin researchers’ findings when scrutinized by others.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012103
Author(s):  
A A Kurilovich ◽  
V N Mantsevich ◽  
K J Stevenson ◽  
A V Chechkin ◽  
V V Palyulin

Abstract We present a diffusion-based simulation model for explanation of long time power-law decay of photoluminescence (PL) emission intensity in semiconductor nanoplatelets. In our model the shape of emission curves is an outcome of interplay of recombination, diffusion and trapping of excitons. At short times the excitons diffuse freely following the normal diffusion behaviour. The emission decay is purely exponential and is defined by recombination. At long times the transition into the subdiffusive motion happens and the emission occurs due to the release of excitons from surface traps. A power-law tail for intensity is a consequence of the release. The crossover from onelimit to another is controlled by diffusion properties. The approach reproduces the properties of experimental curves measured for different nanoplatelet systems.


2021 ◽  
pp. 186810262110420
Author(s):  
Geoffrey C. Gunn

From inside China’s Belt and Road Initiative (BRI), two southern tier nations offer contrary perspectives as to the efficacy of Beijing’s economic statecraft, namely Indonesia and East Timor. While obviously asymmetric in practically every respect, nevertheless a careful study of these two nations’ bilateral links with China over long and short times offers salutary lessons on infrastructure financing in particular. Several interconnected inquiries are interposed. In a nation known for its competing political elites and support bases, how successful has China been in micro-managing its relations with Jakarta over trade and investment deals even carrying through to a post-authoritarian order? How has newly independent albeit aid-dependent Timor-Leste been able to parlay the China connection? Mixing documentary with primary research in situ, the inclusion of the East Timor case adds a missing link in the growing literature on the BRI.


2021 ◽  
Vol 324 ◽  
pp. 139-144
Author(s):  
Sonya Redjala ◽  
Said Azem ◽  
Nourredine Ait Hocine

The polycarbonate (PC) is a highly valued polymeric material for its various characteristics and low cost. Its transparency and impact resistance justify its use in a severe radiation and temperature environment. The aim of this article is to subject this material to aging under ultraviolet (UV) radiation with a wavelength of 253 nm and a temperature of 80°C for various times. The physicochemical and mechanical characterizations of the virgin and aged material have allowed the revelation of the aging effects on the properties. The Fourier Transform Infrared Spectroscopy (FTIR) technique highlight breaks in chemical bonds in the molecular chains of the PC subjected to the combined effects of UV and heat. X-ray analysis have showed a reduction in crystallites and a tendency towards an amorphous state at short times, but the degree of crystallinity increases again at long exposure times of the material. As a result, the microhardness of the aged material is strongly affected on the exposed surface with less effect depending on the depth.


Top ◽  
2021 ◽  
Author(s):  
Marta Pascoal ◽  
José Craveirinha ◽  
João Clímaco

AbstractThe paper addresses the lexicographically maximal risk-disjoint/minimal cost path pair problem that aims at finding a pair of paths between two given nodes, which is the shortest (in terms of cost) among those that have the fewest risks in common. This problem is of particular importance in telecommunication network design, namely concerning resilient routing models where both a primary and a backup path have to be calculated to minimize the risk of failure of a connection between origin and terminal nodes, in case of failure along the primary path and where bandwidth routing costs should also be minimized. An exact combinatorial algorithm is proposed for solving this problem which combines a path ranking method and a path labelling algorithm. Also an integer linear programming (ILP) formulation is shown for comparison purposes. After a theoretical justification of the algorithm foundations, this is described and tested, together with the ILP procedure, for a set of reference networks in telecommunications, considering randomly generated risks, associated with Shared Risk Link Groups (SRLGs) and arc costs. Both methods were capable of solving the problem instances in relatively short times and, in general, the proposed algorithm was clearly faster than the ILP formulation excepting for the networks with the greatest dimension and connectivity.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2251
Author(s):  
Giuseppe Di Modica ◽  
Luca Evangelisti ◽  
Luca Foschini ◽  
Assimo Maris ◽  
Sonia Melandri

In the last years, the development of broadband chirped-pulse Fourier transform microwave spectrometers has revolutionized the field of rotational spectroscopy. Currently, it is possible to experimentally obtain a large quantity of spectra that would be difficult to analyze manually due to two main reasons. First, recent instruments allow obtaining a considerable amount of data in very short times, and second, it is possible to analyze complex mixtures of molecules that all contribute to the density of the spectra. AUTOFIT is a spectral assignment software application that was developed in 2013 to support and facilitate the analysis. Notwithstanding the benefits AUTOFIT brings in terms of automation of the analysis of the accumulated data, it still does not guarantee a good performance in terms of execution time because it leverages the computing power of a single computing machine. To cater to this requirement, we developed a parallel version of AUTOFIT, called HS-AUTOFIT, capable of running on high-performance computing (HPC) clusters to shorten the time to explore and analyze spectral big data. In this paper, we report some tests conducted on a real HPC cluster aimed at providing a quantitative assessment of HS-AUTOFIT’s scaling capabilities in a multi-node computing context. The collected results demonstrate the benefits of the proposed approach in terms of a significant reduction in computing time.


2021 ◽  
Author(s):  
Yuki Harada ◽  
Junji Ohyama

AbstractA head-mounted display cannot cover an angle of visual field as wide as that of natural view (out-of-view problem). To enhance the visual cognition of an immersive environment, previous studies have developed various guidance designs that visualize the location or direction of items presented in the users’ surroundings. However, two issues regarding the guidance effects remain unresolved: How are the guidance effects different with each guided direction? How much is the cognitive load required by the guidance? To investigate the two issues, we performed a visual search task in an immersive environment and measured the search time of a target and time spent to recognize a guidance design. In this task, participants searched for a target presented on a head-mounted display and reported the target color while using a guidance design. The guidance designs (a moving window, 3D arrow, radiation, spherical gradation, and 3D radar) and target directions were manipulated. The search times showed an interaction effect between guidance designs and guided directions, e.g., the 3D arrow and radar shorten the search time for targets presented at the back of users. The recognition times showed that the participants required short times to recognize the details of the moving window and radiation but long times for the 3D arrow, spherical gradation, and 3D radar. These results suggest that the moving window and radiation are effective with respect to cognitive load, but the 3D arrow and radar are effective for guiding users’ attention to necessary items presented at the out-of-view.


Sign in / Sign up

Export Citation Format

Share Document