scholarly journals The Galactic magnetic field and its lensing of ultrahigh energy and Galactic cosmic rays

2015 ◽  
Vol 11 (A29B) ◽  
pp. 723-726 ◽  
Author(s):  
Glennys R. Farrar

AbstractIt has long been recognized that magnetic fields play an important role in many astrophysical environments, yet the strength and structure of magnetic fields beyond our solar system have been at best only qualitatively constrained. The Galactic magnetic field in particular is crucial for modeling the transport of Galactic CRs, for calculating the background to dark matter and CMB-cosmology studies, and for determining the sources of UHECRs. This report gives a brief overview of recent major advances in our understanding of the Galactic magnetic field (GMF) and its lensing of Galactic and ultrahigh energy cosmic rays.

2019 ◽  
Vol 210 ◽  
pp. 04005 ◽  
Author(s):  
Michael Unger ◽  
Glennys Farrar

We discuss the global modeling of the properties of the Galactic Magnetic Field (GMF). Several improvements and variations of the model of the GMF from Jansson & Farrar (2012) (JF12) are investigated in an analysis constrained by all-sky rotation measures of extragalactic sources and polarized and unpolarized synchrotron emission data from WMAP and Planck. We present the impact of the investigated model variations on the propagation of ultrahigh-energy cosmic rays in the Galaxy


2006 ◽  
Vol 84 (6-7) ◽  
pp. 537-543
Author(s):  
R Dick ◽  
K M Hopp ◽  
K E Wunderle

The phase of inflationary expansion in the early Universe produces superheavy relics in a mass window between 1012 and 1014 GeV. Decay or annihilation of these superheavy relics an explain the observed ultrahigh-energy cosmic rays beyond the Greisen–Zatsepin–Kuzmin cutoff. We emphasize that the pattern of cosmic-ray arrival directions seen by the Pierre Auger observatory will decide between the different proposals for the origin of ultrahigh-energy cosmic rays.PACS Nos.: 98.70.Sa, 98.70.–f, 95.35.+d, 14.80.–j


Author(s):  
A AL-Zetoun ◽  
A Achterberg

Abstract We study the effects of drift motions and the advection by a Galactic wind on the propagation of cosmic rays in the Galaxy. We employ a simplified magnetic field model, based on (and similar to) the Jansson-Farrar model for the Galactic magnetic field. Diffusion is allowed to be anisotropic. The relevant equations are solved numerically, using a set of stochastic differential equations. Inclusion of drift and a Galactic wind significantly shortens the residence time of cosmic rays, even for moderate wind speeds.


Sign in / Sign up

Export Citation Format

Share Document