scholarly journals Seismic signatures of magnetic activity in solar-type stars observed by Kepler

2018 ◽  
Vol 13 (S340) ◽  
pp. 225-228
Author(s):  
A. R. G. Santos ◽  
T. L. Campante ◽  
W. J. Chaplin ◽  
M. S. Cunha ◽  
M. N. Lund ◽  
...  

AbstractThe properties of the acoustic modes are sensitive to magnetic activity. The unprecedented long-term Kepler photometry, thus, allows stellar magnetic cycles to be studied through asteroseismology. We search for signatures of magnetic cycles in the seismic data of Kepler solar-type stars. We find evidence for periodic variations in the acoustic properties of about half of the 87 analysed stars. In these proceedings, we highlight the results obtained for two such stars, namely KIC 8006161 and KIC 5184732.

2016 ◽  
Vol 12 (S328) ◽  
pp. 152-158 ◽  
Author(s):  
Raissa Estrela ◽  
Adriana Valio

AbstractObservations of various solar-type stars along decades showed that they could have magnetic cycles, just like our Sun. These observations yield a relation between the rotation period Prot and the cycle length Pcycle of these stars. Two distinct branches for the cycling stars were identified: active and inactive, classified according to stellar activity level and rotation rate. In this work, we determined the magnetic activity cycle for 6 active stars observed by the Kepler telescope. The method adopted here estimates the activity from the excess in the residuals of the transit light curves. This excess is obtained by subtracting a spotless model transit from the light curve, and then integrating over all the residuals during the transit. The presence of long term periodicity is estimated from the analysis of a Lomb-Scargle periodogram of the complete time series. Finally, we investigate the rotation-cycle period relation for the stars analysed here.


1991 ◽  
Vol 130 ◽  
pp. 353-369 ◽  
Author(s):  
Douglas S. Hall

AbstractSpottedness, as evidenced by photometric variability in 277 late-type binary and single stars, is found to occur when the Rossby number is less than about 2/3. This holds true when the convective turnover time versus B–V relation of Gilliland is used for dwarfs and also for subgiants and giants if their turnover times are twice and four times longer, respectively, than for dwarfs. Differential rotation is found correlated with rotation period (rapidly rotating stars approaching solid-body rotation) and also with lobe-filling factor (the differential rotation coefficient k is 2.5 times larger for F = 0 than F = 1). Also reviewed are latitude extent of spottedness, latitude drift during a solar-type cycle, sector structure and preferential longitudes, starspot lifetimes, and the many observational manifestations of magnetic cycles.


2012 ◽  
Vol 8 (S294) ◽  
pp. 471-475
Author(s):  
I. Boisse ◽  
M. Oshagh ◽  
C. Lovis ◽  
N. C. Santos ◽  
X. Dumusque ◽  
...  

AbstractMost of the exoplanet science is dependent on the stellar knowledge. One of them that has to be understood is the magnetic activity when we search for planets with radial velocity or photometry measurements. The main shape of stellar activity and spots properties have to be understood, for example, to choose the best targets to search for low-mass planets in the habitable zone or to derive the accurate parameters of a planetary system. With that aim, we show in this presentation how these studies lead to give clues on spots latitudes and on the long term variation of stellar activity. The properties of magnetic activity on the low rotators solar-type stars are not easily reachable by other techniques (spectropolarimetry or Doppler imaging) and these studies should be used to constrain theories of stellar dynamo.


2019 ◽  
Vol 622 ◽  
pp. A170 ◽  
Author(s):  
T. Willamo ◽  
T. Hackman ◽  
J. J. Lehtinen ◽  
M. J. Käpylä ◽  
I. Ilyin ◽  
...  

Context. Starspots are important manifestations of stellar magnetic activity. By studying their behaviour in young solar analogues, we can unravel the properties of their magnetic cycles. This gives crucial information of the underlying dynamo process. Comparisons with the solar cycle enable us to infer knowledge about how the solar dynamo has evolved during the Sun’s lifetime. Aims. Here we study the correlation between photometric brightness variations, spottedness, and mean temperature in V889 Her, a young solar analogue. Our data covers 18 years of spectroscopic and 25 years of photometric observations. Methods. We use Doppler imaging to derive temperature maps from high-resolution spectra. We use the Continuous Period Search method to retrieve mean V-magnitudes from photometric data. Results. Our Doppler imaging maps show a persistent polar spot structure varying in strength. This structure is centred slightly off the rotational pole. The mean temperature derived from the maps shows an overall decreasing trend, as does the photometric mean brightness, until it reaches its minimum around 2017. The filling factor of cool spots, however, shows only a weak tendency to anti-correlate with the decreasing mean brightness. Conclusions. We interpret V889 Her to have entered into a grand maximum in its activity. The clear relation between the mean temperature of the Doppler imaging surface maps and the mean magnitude supports the reliability of the Doppler images. The lack of correlation between the mean magnitude and the spottedness may indicate that bright features in the Doppler images are real.


1994 ◽  
Vol 143 ◽  
pp. 109-116
Author(s):  
Richard R. Radick

High precision measurements of photometric variability among solar type stars have now been made since 1980. These observations clearly show that year-to-year brightness variations connected with magnetic activity are a widespread phenomenon among such stars. They also suggest that the Sun’s potential for long-term white light variability may be significantly understated by measurements of solar total irradiance during the 1980s.


2018 ◽  
Vol 237 (1) ◽  
pp. 17 ◽  
Author(s):  
A. R. G. Santos ◽  
T. L. Campante ◽  
W. J. Chaplin ◽  
M. S. Cunha ◽  
M. N. Lund ◽  
...  

2020 ◽  
Vol 644 ◽  
pp. A2
Author(s):  
R. V. Ibañez Bustos ◽  
A. P. Buccino ◽  
S. Messina ◽  
A. F. Lanza ◽  
P. J. D. Mauas

Aims. Recently, new debates about the role of layers of strong shear have emerged in stellar dynamo theory. Further information on the long-term magnetic activity of fully convective stars could help determine whether their underlying dynamo could sustain activity cycles similar to the solar one. Methods. We performed a thorough study of the short- and long-term magnetic activity of the young active dM4 star Gl 729. First, we analyzed long-cadence K2 photometry to characterize its transient events (e.g., flares) and global and surface differential rotation. Then, from the Mount Wilson S-indexes derived from CASLEO spectra and other public observations, we analyzed its long-term activity between 1998 and 2020 with four different time-domain techniques to detect cyclic patterns. Finally, we explored the chromospheric activity at different heights with simultaneous measurements of the Hα and the Na I D indexes, and we analyzed their relations with the S-Index. Results. We found that the cumulative flare frequency follows a power-law distribution with slope ~−0.73 for the range 1032–1034 erg. We obtained Prot = (2.848 ± 0.001) days, and we found no evidence of differential rotation. We also found that this young active star presents a long-term activity cycle with a length of about 4 yr; there is less significant evidence of a shorter cycle of 0.8 yr. The star also shows a broad activity minimum between 1998 and 2004. We found a correlation between the S index, on the one hand, and the Hα the Na I D indexes, on the other hand, although the saturation level of these last two indexes is not observed in the Ca lines. Conclusions. Because the maximum-entropy spot model does not reflect migration between active longitudes, this activity cycle cannot be explained by a solar-type dynamo. It is probably caused by an α2-dynamo.


1998 ◽  
Vol 11 (1) ◽  
pp. 370-370
Author(s):  
C.-H. Kim ◽  
J.H. Jeong ◽  
O. Demircan ◽  
Z. Muyesseroulu ◽  
E. Budding

A total of eighteen times of minimum lights for YY Eri were determined from relatively new or unpublished photoelectric observations collected from Korea and Turkey. All minima available to us were intensively analyzed to deduce the character of period variation of YY Eri. It is either formed by a sinusoidal variation superimposed on an upward parabola, or a set of abrupt changes. The abrupt changes appeared to have alternatively occured in the pattern of two increases following one decrease, which may be an indication of sinusoidal variations rather than real sudden changes of period. Upward parabolic variation can be due to a secular period increase caused by mass transfer from less massive to more massive component. The sinusoidal character can arise from a third body or from a strong magnetic activity cycle. Long term sinusoidal light level variation in the light curves supports the cyclic magnetic activity effect on the orbital period. However, the third body hypothesis can not be ruled out by the present data.


2021 ◽  
pp. 103890
Author(s):  
Fabio Scamoni ◽  
Chiara Scrosati ◽  
Michele Depalma ◽  
Benedetta Barozzi

Sign in / Sign up

Export Citation Format

Share Document