photometric variability
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 60)

H-INDEX

32
(FIVE YEARS 7)

2022 ◽  
Vol 924 (2) ◽  
pp. 68
Author(s):  
Johanna M. Vos ◽  
Jacqueline K. Faherty ◽  
Jonathan Gagné ◽  
Mark Marley ◽  
Stanimir Metchev ◽  
...  

Abstract We present a survey for photometric variability in young, low-mass brown dwarfs with the Spitzer Space Telescope. The 23 objects in our sample show robust signatures of youth and share properties with directly imaged exoplanets. We present three new young objects: 2MASS J03492367+0635078, 2MASS J09512690−8023553, and 2MASS J07180871−6415310. We detect variability in 13 young objects, and find that young brown dwarfs are highly likely to display variability across the L2–T4 spectral type range. In contrast, the field dwarf variability occurrence rate drops for spectral types >L9. We examine the variability amplitudes of young objects and find an enhancement in maximum amplitudes compared to field dwarfs. We speculate that the observed range of amplitudes within a spectral type may be influenced by secondary effects such as viewing inclination and/or rotation period. We combine our new rotation periods with the literature to investigate the effects of mass on angular momentum evolution. While high-mass brown dwarfs (>30M Jup) spin up over time, the same trend is not apparent for lower-mass objects (<30M Jup), likely due to the small number of measured periods for old, low-mass objects. The rotation periods of companion brown dwarfs and planetary-mass objects are consistent with those of isolated objects with similar ages and masses, suggesting similar angular momentum histories. Within the AB Doradus group, we find a high-variability occurrence rate and evidence for common angular momentum evolution. The results are encouraging for future variability searches in directly imaged exoplanets with facilities such as the James Webb Space Telescope and 30 m telescopes.


2021 ◽  
Vol 921 (2) ◽  
pp. 165
Author(s):  
Tirthendu Sinha ◽  
Saurabh Sharma ◽  
Neelam Panwar ◽  
N. Matsunaga ◽  
K. Ogura ◽  
...  

2021 ◽  
Vol 922 (1) ◽  
pp. 5
Author(s):  
Ryan M. Lau ◽  
Samaporn Tinyanont ◽  
Matthew J. Hankins ◽  
Michael C. B. Ashley ◽  
Kishalay De ◽  
...  

Abstract We present optical and infrared (IR) light curves of NaSt1, also known as Wolf–Rayet 122, with observations from Palomar Gattini-IR (PGIR), the Zwicky Transient Facility (ZTF), the Katzman Automatic Imaging Telescope, the Asteroid Terrestrial-impact Last Alert System, and the All-Sky Automated Survey for Supernovae (ASAS-SN). We identify a P = 309.7 ± 0.7 day photometric period from the optical and IR light curves that reveal periodic, sinusoidal variability between 2014 July and 2021 July. We also present historical IR light curves taken between 1983 July and 1989 May, which show variability consistent with the period of the present-day light curves. In the past, NaSt1 was brighter in the J band with larger variability amplitudes than the present-day PGIR values, suggesting that NaSt1 exhibits variability on longer (≳decade) timescales. Sinusoidal fits to the recent optical and IR light curves show that the amplitude of NaSt1's variability differs at various wavelengths and also reveal significant phase offsets of 17.0 ± 2.5 day between the ZTF r and PGIR J light curves. We interpret the 310 day photometric period from NaSt1 as the orbital period of an enshrouded massive binary. We suggest that the photometric variability of NaSt1 may arise from variations in the line-of-sight optical depth toward circumstellar optical/IR-emitting regions throughout its orbit due to colliding-wind dust formation. We speculate that past mass transfer in NaSt1 may have been triggered by Roche-lobe overflow (RLOF) during an eruptive phase of an Ofpe/WN9 star. Lastly, we argue that NaSt1 is no longer undergoing RLOF mass transfer.


2021 ◽  
Vol 14 (10) ◽  
pp. 6561-6599
Author(s):  
Liviu Ivănescu ◽  
Konstantin Baibakov ◽  
Norman T. O'Neill ◽  
Jean-Pierre Blanchet ◽  
Karl-Heinz Schulz

Abstract. Starphotometry, the night-time counterpart of sunphotometry, has not yet achieved the commonly sought observational error level of 1 %: a spectral optical depth (OD) error level of 0.01. In order to address this issue, we investigate a large variety of systematic (absolute) uncertainty sources. The bright-star catalogue of extraterrestrial references is noted as a major source of errors with an attendant recommendation that its accuracy, particularly its spectral photometric variability, be significantly improved. The small field of view (FOV) employed in starphotometry ensures that it, unlike sun- or moonphotometry, is only weakly dependent on the intrinsic and artificial OD reduction induced by scattering into the FOV by optically thin clouds. A FOV of 45 arcsec (arcseconds) was found to be the best trade-off for minimizing such forward-scattering errors concurrently with flux loss through vignetting. The importance of monitoring the sky background and using interpolation techniques to avoid spikes and to compensate for measurement delay was underscored. A set of 20 channels was identified to mitigate contamination errors associated with stellar and terrestrial atmospheric gas absorptions, as well as aurora and airglow emissions. We also note that observations made with starphotometers similar to our High Arctic instrument should be made at high angular elevations (i.e. at air masses less than 5). We noted the significant effects of snow crystal deposition on the starphotometer optics, how pseudo OD increases associated with this type of contamination could be detected, and how proactive techniques could be employed to avoid their occurrence in the first place. If all of these recommendations are followed, one may aspire to achieve component errors that are well below 0.01: in the process, one may attain a total 0.01 OD target error.


2021 ◽  
Vol 915 (2) ◽  
pp. 112
Author(s):  
Matteo Cantiello ◽  
Daniel Lecoanet ◽  
Adam S. Jermyn ◽  
Luca Grassitelli

2021 ◽  
Vol 912 (2) ◽  
pp. 127
Author(s):  
Victor See ◽  
Julia Roquette ◽  
Louis Amard ◽  
Sean P. Matt

2021 ◽  
Author(s):  
Liviu Ivănescu ◽  
Konstantin Baibakov ◽  
Norman T. O'Neill ◽  
Jean-Pierre Blanchet ◽  
Karl-Heinz Schulz

Abstract. Starphotometry, the nightime counterpart of sunphotometry, has not yet achieved the commonly sought observational error level of 1%: a spectral optical depth (OD) error level of 0.01. In order to address this issue, we investigate a large variety of systematic (absolute) uncertainty sources. The bright star catalog of extraterrestrial references is noted as a major source of errors with an attendant recommendation that its accuracy, as well as its spectral photometric variability, be significantly improved. The small Field of View (FOV) employed in starphotometry ensures that starphotometry, unlike sun- or moonphotometry, is only weakly dependent on the intrinsic and artificial OD reduction induced by scattering into the FOV by optically thin clouds. A FOV of 45 arc-seconds was found to be the best tradeoff for minimizing such forward scattering errors concurrently with flux loss through vignetting. The importance of monitoring the sky background and using interpolation techniques to avoid spikes and to compensate for measurement delay was underscored. A set of 20 channels was identified to mitigate contamination errors associated with stellar and terrestrial-atmospheric gas absorptions, as well as aurora and airglow emissions. We also note that observations for starsphotometers similar to our high-Arctic starphotometer should be made at high angular elevations, i.e. at airmasses lower than 5. We noted the significant effects of snow crystal deposition on the starphotometer optics, how pseudo OD increases associated with this type of contamination could be detected and how proactive techniques could be employed to avoid their occurrence in the first place. If all these recommendations are followed, one may aspire to achieve component errors that are well below 0.01: in the process one may attain a total 0.01 OD target error.


2021 ◽  
Vol 648 ◽  
pp. A95
Author(s):  
N. Chornay ◽  
N. A. Walton ◽  
D. Jones ◽  
H. M. J. Boffin ◽  
M. Rejkuba ◽  
...  

Context. Many if not most planetary nebulae (PNe) are now thought to be the outcome of binary evolutionary scenarios. However, only a few percent of the PNe in the Milky Way are known to host binary systems. The high-precision repeated observing and long time baseline of Gaia make it well suited for detecting new close binaries through photometric variability. Aims. We aim to find new close binary central stars of PNe (CSPNe) using data from the Gaia mission, building towards a statistically significant sample of post-common envelope, close binary CSPNe. Methods. As the vast majority of Gaia sources do not have published epoch photometry, we used the uncertainty in the mean photometry as a proxy for determining the variability of our CSPN sample in the second Gaia data release. We derived a quantity that expresses the significance of the variability, and considered what is necessary to build a clean sample of genuine variable sources. Results. Our selection recovers a large fraction of the known close binary CSPN population, while other CSPNe lying in the same region of the parameter space represent a promising set of targets for ground-based confirmatory follow-up observations. Gaia epoch photometry for four of the newly identified variable sources confirms that the variability is genuine and consistent with binarity.


2021 ◽  
Vol 647 ◽  
pp. L1
Author(s):  
C. Koen

Aims. I aim to investigate whether the photometric variability in the candidate host star CVSO 30 can be explained by starspots. Methods. The Transiting Exoplanet Survey Satellite (TESS) light curve of CVSO 30 is separated into two independent non-sinusoidal periodic components. A starspot modelling technique is applied to each of these components. Results. Combined, the two model light curves reproduce the TESS observations to a high accuracy, obviating the need to invoke planetary transits to describe part of the variability.


2021 ◽  
Vol 503 (2) ◽  
pp. 1599-1614
Author(s):  
Michael Poon ◽  
J J Zanazzi ◽  
Wei Zhu

ABSTRACT KH 15D is a system that consists of a young, eccentric binary, and a circumbinary disc that obscures the binary as the disc precesses. We develop a self-consistent model that provides a reasonable fit to the photometric variability that was observed in the KH 15D system over the past 60 yr. Our model suggests that the circumbinary disc has an inner edge rin ≲ 1 au, an outer edge rout ∼ a few au, and that the disc is misaligned relative to the stellar binary by ∼5–16°, with the inner edge more inclined than the outer edge. The difference between the inclinations (warp) and longitude of ascending nodes (twist) at the inner and outer edges of the disc are of order ∼10 and ∼15°, respectively. We also provide constraints on other properties of the disc, such as the precession period and surface density profile. Our work demonstrates the power of photometric data in constraining the physical properties of planet-forming circumbinary discs.


Sign in / Sign up

Export Citation Format

Share Document