MODELS OF PT– WITH INTERNAL INDUCTION FOR TOTAL FORMULAE

2016 ◽  
Vol 10 (1) ◽  
pp. 187-202 ◽  
Author(s):  
CEZARY CIEŚLIŃSKI ◽  
MATEUSZ ŁEŁYK ◽  
BARTOSZ WCISŁO

AbstractWe show that a typed compositional theory of positive truth with internal induction for total formulae (denoted by PTtot) is not semantically conservative over Peano arithmetic. In addition, we observe that the class of models of PA expandable to models of PTtot contains every recursively saturated model of arithmetic. Our results point to a gap in the philosophical project of describing the use of the truth predicate in model-theoretic contexts.

1986 ◽  
Vol 51 (1) ◽  
pp. 222-224 ◽  
Author(s):  
Julia F. Knight

The complete diagram of a structure , denoted by Dc(), is the set of all sentences true in the structure (, a)a∈. A structure is said to be resplendent if for every sentence θ involving a new relation symbol R in addition to symbols occurring in Dc(), if θ is consistent with Dc(), then there is a relation P on such that (see[1]).Baldwin asked whether a homogeneous recursively saturated structure is necessarily resplendent. Here it is shown that this need not be the case. It is shown that if is an uncountable homogeneous resplendent model of an unstable theory, then must be saturated. The proof is related to the proof in [5] that an uncountable homogeneous recursively saturated model of first order Peano arithmetic must be saturated. The example for Baldwin's question is an uncountable homogeneous model for a particular unstable theory, such that is recursively saturated and omits some type. (The continuum hypothesis is needed to show the existence of such a model in power ℵ1.)The proof of the main result requires two lemmas.


Author(s):  
Cezary Cieśliński

AbstractWe present a construction of a truth class (an interpretation of a compositional truth predicate) in an arbitrary countable recursively saturated model of first-order arithmetic. The construction is fully classical in that it employs nothing more than the classical techniques of formal proof theory.


1989 ◽  
Vol 54 (4) ◽  
pp. 1382-1388 ◽  
Author(s):  
James H. Schmerl

The motivation for the results presented here comes from the following two known theorems which concern countable, recursively saturated models of Peano arithmetic.(1) if is a countable, recursively saturated model of PA, then for each infinite cardinal κ there is a resplendent which has cardinality κ. (See Theorem 10 of [1].)(2) if is a countable, recursively saturated model of PA, then is generated by a set of indiscernibles. (See [4].)It will be shown here that (1) and (2) can be amalgamated into a common generalization.(3) if is a countable, recursively saturated model of PA, then for each infinite cardinal κ there is a resplendent which has cardinality κ and which is generated by a set of indiscernibles.By way of contrast we will also get recursively saturated models of PA which fail to be resplendent and yet are generated by indiscernibles.(4) if is a countable, recursively saturated model of PA, then for each uncountable cardinal κ there is a κ-like recursively saturated generated by a set of indiscernibles.None of (1), (2) or (3) is stated in its most general form. We will make some comments concerning their generalizations. From now on let us fix a finite language L; all structures considered are infinite L-structures unless otherwise indicated.


1987 ◽  
Vol 52 (1) ◽  
pp. 129-148 ◽  
Author(s):  
Matt Kaufmann ◽  
James H. Schmerl

This paper is a sequel to our earlier paper [2] entitled Saturation and simple extensions of models of Peano arithmetic. Among other things, we will answer some of the questions that were left open there. In §1 we consider the question of whether there are lofty models of PA which have no recursively saturated, simple extensions. We are still unable to answer this question; but we do show in that section that these models are precisely the lofty models which are not recursively saturated and which are κ-like for some regular κ. In §2 we use diagonal methods to produce minimal models of PA in which the standard cut is recursively definable, and other minimal models in which the standard cut is not recursively definable. In §3 we answer two questions from [2] by exhibiting countable models of PA which, in the terminology of this paper, are uniformly ω-lofty but not continuously ω-lofty and others which are continuously ω-lofty but not recursively saturated. We also construct a model (assuming ◇) which is not recursively saturated but every proper, simple cofinal extension of which is ℵ1-saturated. Finally, in §4 we answer another question from [2] by proving that for regular κ ≥ ℵ1; every κ-saturated model of PA has a κ-saturated proper, simple extension which is not κ+-saturated.Our notation and terminology are quite standard. Anything unfamiliar to the reader and not adequately denned here is probably defined in §1 of [2]. All models considered are models of Peano arithmetic.


Author(s):  
Ali Enayat

AbstractA model $${\mathcal {M}}$$ M of ZF is said to be condensable if $$ {\mathcal {M}}\cong {\mathcal {M}}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for some “ordinal” $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M , where $$\mathcal {M}(\alpha ):=(\mathrm {V}(\alpha ),\in )^{{\mathcal {M}}}$$ M ( α ) : = ( V ( α ) , ∈ ) M and $$\mathbb {L}_{{\mathcal {M}}}$$ L M is the set of formulae of the infinitary logic $$\mathbb {L}_{\infty ,\omega }$$ L ∞ , ω that appear in the well-founded part of $${\mathcal {M}}$$ M . The work of Barwise and Schlipf in the 1970s revealed the fact that every countable recursively saturated model of ZF is cofinally condensable (i.e., $${\mathcal {M}}\cong {\mathcal {M}}(\alpha ) \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for an unbounded collection of $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M ). Moreover, it can be readily shown that any $$\omega $$ ω -nonstandard condensable model of $$\mathrm {ZF}$$ ZF is recursively saturated. These considerations provide the context for the following result that answers a question posed to the author by Paul Kindvall Gorbow.Theorem A.Assuming a modest set-theoretic hypothesis, there is a countable model $${\mathcal {M}}$$ M of ZFC that is bothdefinably well-founded (i.e., every first order definable element of $${\mathcal {M}}$$ M is in the well-founded part of $$\mathcal {M)}$$ M ) andcofinally condensable. We also provide various equivalents of the notion of condensability, including the result below.Theorem B.The following are equivalent for a countable model$${\mathcal {M}}$$ M of $$\mathrm {ZF}$$ ZF : (a) $${\mathcal {M}}$$ M is condensable. (b) $${\mathcal {M}}$$ M is cofinally condensable. (c) $${\mathcal {M}}$$ M is nonstandard and $$\mathcal {M}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ( α ) ≺ L M M for an unbounded collection of $$ \alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M .


2002 ◽  
Vol 67 (4) ◽  
pp. 1265-1273
Author(s):  
James H. Schmerl

Some highly saturated models of Peano Arithmetic are constructed in this paper, which consists of two independent sections. In § 1 we answer a question raised in [10] by constructing some highly saturated, rather classless models of PA. A question raised in [7], [3], ]4] is answered in §2, where highly saturated, nonstandard universes having no bad cuts are constructed.Highly saturated, rather classless models of Peano Arithmetic were constructed in [10]. The main result proved there is the following theorem. If λ is a regular cardinal and is a λ-saturated model of PA such that ∣M∣ > λ, then has an elementary extension of the same cardinality which is also λ-saturated and which, in addition, is rather classless. The construction in [10] produced a model for which cf() = λ+. We asked in Question 5.1 of [10] what other cofinalities could such a model have. This question is answered here in Theorem 1.1 of §1 by showing that any cofinality not immediately excluded is possible. Its proof does not depend on the theorem from [10]; in fact, the proof presented here gives a proof of that theorem which is much simpler and shorter than the one in [10].Recursively saturated, rather classless κ-like models of PA were constructed in [9]. In the case of singular κ such models were constructed whenever cf(κ) > ℵ0; no additional set-theoretic hypothesis was needed.


2010 ◽  
Vol 16 (3) ◽  
pp. 345-358 ◽  
Author(s):  
Samuel Coskey ◽  
Roman Kossak

AbstractWe observe that the classification problem for countable models of arithmetic is Borel complete. On the other hand, the classification problems for finitely generated models of arithmetic and for recursively saturated models of arithmetic are Borel; we investigate the precise complexity of each of these. Finally, we show that the classification problem for pairs of recursively saturated models and for automorphisms of a fixed recursively saturated model are Borel complete.


Sign in / Sign up

Export Citation Format

Share Document