scholarly journals Condensable models of set theory

Author(s):  
Ali Enayat

AbstractA model $${\mathcal {M}}$$ M of ZF is said to be condensable if $$ {\mathcal {M}}\cong {\mathcal {M}}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for some “ordinal” $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M , where $$\mathcal {M}(\alpha ):=(\mathrm {V}(\alpha ),\in )^{{\mathcal {M}}}$$ M ( α ) : = ( V ( α ) , ∈ ) M and $$\mathbb {L}_{{\mathcal {M}}}$$ L M is the set of formulae of the infinitary logic $$\mathbb {L}_{\infty ,\omega }$$ L ∞ , ω that appear in the well-founded part of $${\mathcal {M}}$$ M . The work of Barwise and Schlipf in the 1970s revealed the fact that every countable recursively saturated model of ZF is cofinally condensable (i.e., $${\mathcal {M}}\cong {\mathcal {M}}(\alpha ) \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for an unbounded collection of $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M ). Moreover, it can be readily shown that any $$\omega $$ ω -nonstandard condensable model of $$\mathrm {ZF}$$ ZF is recursively saturated. These considerations provide the context for the following result that answers a question posed to the author by Paul Kindvall Gorbow.Theorem A.Assuming a modest set-theoretic hypothesis, there is a countable model $${\mathcal {M}}$$ M of ZFC that is bothdefinably well-founded (i.e., every first order definable element of $${\mathcal {M}}$$ M is in the well-founded part of $$\mathcal {M)}$$ M ) andcofinally condensable. We also provide various equivalents of the notion of condensability, including the result below.Theorem B.The following are equivalent for a countable model$${\mathcal {M}}$$ M of $$\mathrm {ZF}$$ ZF : (a) $${\mathcal {M}}$$ M is condensable. (b) $${\mathcal {M}}$$ M is cofinally condensable. (c) $${\mathcal {M}}$$ M is nonstandard and $$\mathcal {M}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ( α ) ≺ L M M for an unbounded collection of $$ \alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M .

1986 ◽  
Vol 51 (1) ◽  
pp. 222-224 ◽  
Author(s):  
Julia F. Knight

The complete diagram of a structure , denoted by Dc(), is the set of all sentences true in the structure (, a)a∈. A structure is said to be resplendent if for every sentence θ involving a new relation symbol R in addition to symbols occurring in Dc(), if θ is consistent with Dc(), then there is a relation P on such that (see[1]).Baldwin asked whether a homogeneous recursively saturated structure is necessarily resplendent. Here it is shown that this need not be the case. It is shown that if is an uncountable homogeneous resplendent model of an unstable theory, then must be saturated. The proof is related to the proof in [5] that an uncountable homogeneous recursively saturated model of first order Peano arithmetic must be saturated. The example for Baldwin's question is an uncountable homogeneous model for a particular unstable theory, such that is recursively saturated and omits some type. (The continuum hypothesis is needed to show the existence of such a model in power ℵ1.)The proof of the main result requires two lemmas.


Author(s):  
Cezary Cieśliński

AbstractWe present a construction of a truth class (an interpretation of a compositional truth predicate) in an arbitrary countable recursively saturated model of first-order arithmetic. The construction is fully classical in that it employs nothing more than the classical techniques of formal proof theory.


1998 ◽  
Vol 63 (3) ◽  
pp. 815-830 ◽  
Author(s):  
Friederike Körner

AbstractSection 1 is devoted to the study of countable recursively saturated models with an automorphism moving every non-algebraic point. We show that every countable theory has such a model and exhibit necessary and sufficient conditions for the existence of automorphisms moving all non-algebraic points. Furthermore we show that there are many complete theories with the property that every countable recursively saturated model has such an automorphism.In Section 2 we apply our main theorem from Section 1 to models of Quine's set theory New Foundations (NF) to answer an old consistency question. If NF is consistent, then it has a model in which the standard natural numbers are a definable subclass ℕ of the model's set of internal natural numbers Nn. In addition, in this model the class of wellfounded sets is exactly .


1976 ◽  
Vol 41 (2) ◽  
pp. 531-536 ◽  
Author(s):  
Jon Barwise ◽  
John Schlipf

The notions of recursively saturated and resplendent models grew out of the study of admissible sets with urelements and admissible fragments of Lω1ω, but, when applied to ordinary first order model theory, give us new tools for research and exposition. We will discuss their history in §3.The notion of saturated model has proven to be important in model theory. Its most important property for applications is that if , are saturated and of the same cardinality then = iff ≅ . See, e.g., Chang-Keisler [3]. The main drawback is that saturated models exist only under unusual assumptions of set theory. For example, if 2κ = κ+ then every theory T of L has a saturated model of power κ+. (Similarly, if κ is strongly inaccessible, then every T has a saturated model of power κ.) On the other hand, a theory T like Peano arithmetic, with types, cannot have a saturated model in any power κ with ω ≤ κ ≤ .One method for circumventing these problems of existence (or rather non-existence) is the use of “special” models (cf. [3]). If κ = Σλ<κ2λ, κ < ω, then every theory T of L has a special model of power κ. Such cardinals are large and, themselves, rather special. There are definite aesthetic objections to the use of these large, singular models to prove results about first order logic.


2008 ◽  
Vol 73 (3) ◽  
pp. 824-830 ◽  
Author(s):  
Fredrik Engström

AbstractLet (M, )⊨ ACA0 be such that , the collection of all unbounded sets in , admits a definable complete ultrafilter and let T be a theory extending first order arithmetic coded in such that M thinks T is consistent. We prove that there is an end-extension N ⊨ T of M such that the subsets of M coded in N are precisely those in . As a special case we get that any Scott set with a definable ultrafilter coding a consistent theory T extending first order arithmetic is the standard system of a recursively saturated model of T.


2013 ◽  
Vol 78 (1) ◽  
pp. 139-156 ◽  
Author(s):  
Joel David Hamkins ◽  
David Linetsky ◽  
Jonas Reitz

AbstractA pointwise definable model is one in which every object is definable without parameters. In a model of set theory, this property strengthens V = HOD, but is not first-order expressible. Nevertheless, if ZFC is consistent, then there are continuum many pointwise definable models of ZFC. If there is a transitive model of ZFC, then there are continuum many pointwise definable transitive models of ZFC. What is more, every countable model of ZFC has a class forcing extension that is pointwise definable. Indeed, for the main contribution of this article, every countable model of Gödel-Bernays set theory has a pointwise definable extension, in which every set and class is first-order definable without parameters.


1982 ◽  
Vol 47 (3) ◽  
pp. 587-604 ◽  
Author(s):  
Julia Knight ◽  
Mark Nadel

If is a countable recursively saturated structure and T is a recursively axiomatizable theory that is consistent with Th(), then it is well known that can be expanded to a recursively saturated model of T [7, p. 186]. This is what has made recursively saturated models useful in model theory. Recursive saturation is the weakest notion of saturation for which this expandability result holds. In fact, if is a countable model of Pr = Th(ω, +), then can be expanded to a model of first order Peano arithmetic P just in case is recursively saturated (see [3]).In this paper we investigate two natural sets of Turing degrees that tell a good deal about the expandability of a given structure. If is a recursively saturated structure, I() consists of the degrees of sets that are recursive in complete types realized in . The second set of degrees, D(), consists of the degrees of sets S such that is recursive in S-saturated. In general, I() ⊆ D(). Moreover, I() is obviously an “ideal” of degrees. For countable structures , D() is “closed” in the following sense: For any class C ⊆ 2ω, if C is co-r.e. in S for some set S such that , then there is some σ ∈ C such that . For uncountable structures , we do not know whether D() must be closed.


1987 ◽  
Vol 30 (4) ◽  
pp. 385-392 ◽  
Author(s):  
Thomas Jech

AbstractWe axiomatize the theory of real and complex numbers in Boolean-valued models of set theory, and prove that every Horn sentence true in the complex numbers is true in any complete Stonean algebra, and provable from its axioms.


Sign in / Sign up

Export Citation Format

Share Document