scholarly journals The Product of Two Legendre Polynomials

1953 ◽  
Vol 1 (3) ◽  
pp. 121-125 ◽  
Author(s):  
John Dougall

1. It is known that any polynomial in μ. can be expanded as a linear function of Legendre polynomials [1]. In particular, we haveThe earlier coefficients, say A0, A2, A4 may easily be found by equating the coefficients of μp+q, μp+q-2, μp+q-4 on the two sides of (1). The general coefficient A2k might then be surmised, and the value verified by induction. This may have been the method followed by Ferrers, who stated the result as an exercise in his Spherical Harmonics (1877). A proof was published by J. C. Adams [2]. The proof now to be given follows different lines from his.

Author(s):  
D.E. Winch ◽  
P.H. Roberts

AbstractDifferentiation of the well-known addition theorem for Legendre polynomials produces results for sums over order m of products of various derivatives of associated Legendre functions. The same method is applied to the corresponding addition theorems for vector and tensor spherical harmonics. Results are also given for Chebyshev polynomials of the second kind, corresponding to ‘spin-weighted’ associated Legendre functions, as used in studies of distributions of rotations.


1920 ◽  
Vol 10 (2) ◽  
pp. 161-169 ◽  
Author(s):  
J. W. S. Macfie

The pupa is bilaterally symmetrical, that is, setae occur in similar situations on each side of the body, so that it will suffice to describe the arrangement on one side only. The setae on the two sides of the same pupa, however, often vary as regards their sub-divisions, and similar variations occur between different individuals; as an example, in Table I are shown some of the variations that were found in ten pupae taken at random. An examination of a larger number would have revealed a wider range. As a rule, a seta which is sometimes single, sometimes divided, is longer when single. For example, in one pupa the seta at the posterior angle ofthe seventh segment was single on the right side, double on the left; the former measuring 266μ, and the latter only 159μ in length. This fact is not specifically mentioned in the descriptions which follow, but should be understood.


1966 ◽  
Vol 18 ◽  
pp. 1261-1263 ◽  
Author(s):  
Amnon Jakimovski

With a holomorphic function f(z) defined in a domain H which includes the closed interval [—1, 1] we associate the Neumann series1where Pn(z), Qn(t) are, respectively, the nth Legendre polynomials of the first and second kind and γ is a closed and rectifiable Jordan curve which includes [— 1, 1] in its interior and is included, together with its interior, in H.


1980 ◽  
Vol 32 (5) ◽  
pp. 1045-1057 ◽  
Author(s):  
Patrick J. Browne ◽  
Rodney Nillsen

Throughout this paper we shall use I to denote a given interval, not necessarily bounded, of real numbers and Cn to denote the real valued n times continuously differentiable functions on I and C0 will be abbreviated to C. By a differential operator of order n we shall mean a linear function L:Cn → C of the form1.1where pn(x) ≠ 0 for x ∊ I and pi ∊ Cj 0 ≦ j ≦ n. The function pn is called the leading coefficient of L.It is well known (see, for example, [2, pp. 73-74]) thai a differential operator L of order n uniquely determines both a differential operator L* of order n (the adjoint of L) and a bilinear form [·,·]L (the Lagrange bracket) so that if D denotes differentiation, we have for u, v ∊ Cn,1.2


1953 ◽  
Vol 5 ◽  
pp. 301-305 ◽  
Author(s):  
Fred Brafman

The Jacobi polynomials may be defined bywhere (a)n = a (a + 1) … (a + n — 1). Putting β = α gives the ultraspherical polynomials which have as a special case the Legendre polynomials .


1922 ◽  
Vol 41 ◽  
pp. 82-93
Author(s):  
T. M. MacRobert

Associated Legendre Functions as Integrals involving Bessel Functions. Let,where C denotes a contour which begins at −∞ on the real axis, passes positively round the origin, and returns to −∞, amp λ=−π initially, and R(z)>0, z being finite and ≠1. [If R(z)>0 and z is finite, then R(z±)>0.] Then if I−m (λ) be expanded in ascending powers of λ, and if the resulting expression be integrated term by term, it is found that


1930 ◽  
Vol 26 (4) ◽  
pp. 507-527
Author(s):  
L. B. Turner ◽  
L. A. Meacham

The characteristic relationship subsisting between anode current ia, anode potential ea, and grid potential eg in a well-evacuated thermionic triode, viz.leads to very simple analysis of the circuit conditions when μ, is a constant and φ is a linear function. In all the usual applications of triodes, μ is very nearly a constant; in some applications, e.g. in good acoustic amplifiers, over the working range φ is very nearly linear; in others, e.g. in rectifiers, non-linearity is essential to the performance. In oscillators, and in power amplifiers used with them, both conditions are met. Where a sinoidal oscillation is desired, i.e. an alternating current as devoid of harmonics of the fundamental frequency as can be contrived, the working range must be sensibly linear. A feature of such a régime is that the major portion of the power supplied to the triode must be dissipated in heating the anode. Where higher efficiency is required, the cycle must be made to extend beyond the linear range, and harmonics are necessarily introduced.


1954 ◽  
Vol 50 (2) ◽  
pp. 261-265
Author(s):  
F. Huckemann

1. The conformal mapping of a strip domain in the z-plane on to a parallel strip— parallel, say, to the real axis of the ζ ( = ξ + iμ)-plane—brings about a certain distortion. More precisely: consider a cross-cut on the line ℜz = c joining the two sides of the frontier of the strip domain (in these introductory remarks we suppose for simplicity that there is only one such cross-cut on that line), and denote by ξ1(c) and ξ2(c) the lower and upper bounds of ξ on the image in the ζ-plane. The theorem of Ahlfors (1), now classical, states thatprovided thatwhere a is the width of the parallel strip and θ(c) the length of the cross-cut.


1950 ◽  
Vol 46 (4) ◽  
pp. 549-554 ◽  
Author(s):  
R. Cooper

1. The tabulated values of the Legendre polynomials suggest that the right-hand minimum of Pn(x) changes monotonically as n increases. Let xr, n be the value of x which gives the rth extreme value to the left of 1 of Pn(x). Then we can show thatwhere jr is the rth pösitive zero of J1(z), and that after some term the sequence Pn(xr, n) is monotonic with the moduli of the terms decreasing. We cannot, however, show that the sequence is monotonic from the place at which its terms become significant.


Sign in / Sign up

Export Citation Format

Share Document