Dark-Field Microscopic Detection of Bacteria using Bacteriophage-Immobilized SiO2@AuNP Core–Shell Nanoparticles

2019 ◽  
Vol 91 (19) ◽  
pp. 12352-12357 ◽  
Author(s):  
Masashi Imai ◽  
Kouhei Mine ◽  
Haruna Tomonari ◽  
Jumpei Uchiyama ◽  
Shigenobu Matuzaki ◽  
...  
Microscopy ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 26-30
Author(s):  
Shin Inamoto ◽  
Yuji Otsuka

Abstract The properties of core-shell nanoparticles, which are used for many catalytic processes as an alternative to platinum, depend on the size of both the particle and the shell. It is thus necessary to develop a quantitative method to determine the shell thickness. Pd–Pt core-shell particles were analyzed using scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX). Quantitative EDX line profiles acquired from the core-shell particle were compared to four core-shell models. The results indicate that the thickness of the Pt shell corresponds to two atomic layers. Meanwhile, high-angle annular dark-field STEM images from the same particle were analyzed and compared to simulated images. Again, this experiment demonstrates that the shell thickness was of two atomic layers. Our results indicate that, in small particles, it is possible to use EDX for a precise atomic-scale quantitative analysis.


2012 ◽  
Vol 27 (1) ◽  
pp. 95-101
Author(s):  
Shi-Bin LIU ◽  
Chun-Ying YANG ◽  
Zhong-Lin ZHANG ◽  
Dong-Hong DUAN ◽  
Xiao-Gang HAO ◽  
...  

2013 ◽  
Vol 20 (28) ◽  
pp. 3488-3499 ◽  
Author(s):  
Yon Jung ◽  
Hwanbum Lee ◽  
Jae Kim ◽  
Eun Koo ◽  
Keun Oh ◽  
...  

2021 ◽  
Vol 330 ◽  
pp. 129364
Author(s):  
Jinhua Wang ◽  
Jiamin Wu ◽  
Yuping Zhang ◽  
Xia Zhou ◽  
Ziwei Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document