Twofold Effects of Zirconium Doping into TiN on Durability and Oxygen Reduction Reactivity in an Acidic Environment

Author(s):  
Mitsuharu Chisaka ◽  
Rong Xiang ◽  
Shigeo Maruyama ◽  
Hirofumi Daiguji
Author(s):  
Min-Rui Gao ◽  
Xiao-Long Zhang ◽  
Xiaozhi Su ◽  
Ya-Rong Zheng ◽  
Shao-Jin Hu ◽  
...  

2019 ◽  
Vol 55 (40) ◽  
pp. 5693-5696 ◽  
Author(s):  
Kui Sun ◽  
Jia Li ◽  
Feng Wang ◽  
Wenxiang He ◽  
Minfei Fei ◽  
...  

An N-doped graphitic carbon layer was for the first time introduced to greatly enhance the durability of a PtNi3/C alloy catalyst in an acidic environment.


2021 ◽  
Author(s):  
Min-Rui Gao ◽  
Xiao-Long Zhang ◽  
Xiaozhi Su ◽  
Ya-Rong Zheng ◽  
Shao-Jin Hu ◽  
...  

Nanoscale ◽  
2020 ◽  
Vol 12 (39) ◽  
pp. 20413-20424
Author(s):  
Riming Hu ◽  
Yongcheng Li ◽  
Fuhe Wang ◽  
Jiaxiang Shang

Bilayer single atom catalysts can serve as promising multifunctional electrocatalysts for the HER, ORR, and OER.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Sharma Pankaj ◽  
Tailang Mukul

The aim of present work was to prepare colon specific delivery system of Ornidazole using different ratio of shellac, zein and guar gum. From study of various literature it revealed that shellac, zein and guar gum released drug from dosage form at the pH of 6.9, 11.5, 7-9 respectively. The main problem associated with colon targeted drug delivery system is degradation of drug in the acidic environment of stomach to circumvent the present problem different combinations of shellac, zein and guar gum were employed in the formulation of colon targeted tablet. Several preformulation parameters were determined such as melting point, FTIR spectroscopy, preparation of calibration curve, determination of λmax and partition coefficient. After the preformulation studies, next steps were preparation of core tablets, evaluation of core of tablets and coating of tablets. The data obtained from preformulation study seven formulations were developed and evaluated for various parameters. Based on evaluated parameter such as weight variation, friability, dissolution study, invitro drug release etc. the F7 formulation show better results colon targeted tablets. Drug content in F7 formulation was 95% and drug release after 6 hrs was 96%. Formulation containing combination of shellac, zein and guar gum released least amount of drug in the acidic environment of stomach and released most of the drug in colon. It is evide


2020 ◽  
Author(s):  
Travis Marshall-Roth ◽  
Nicole J. Libretto ◽  
Alexandra T. Wrobel ◽  
Kevin Anderton ◽  
Nathan D. Ricke ◽  
...  

Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum in fuel cells, but their active site structures are poorly understood. A leading postulate is that iron active sites in this class of materials exist in an Fe-N<sub>4</sub> pyridinic ligation environment. Yet, molecular Fe-based catalysts for the oxygen reduction reaction (ORR) generally feature pyrrolic coordination and pyridinic Fe-N<sub>4</sub> catalysts are, to the best of our knowledge, non-existent. We report the synthesis and characterization of a molecular pyridinic hexaazacyclophane macrocycle, (phen<sub>2</sub>N<sub>2</sub>)Fe, and compare its spectroscopic, electrochemical, and catalytic properties for oxygen reduction to a prototypical Fe-N-C material, as well as iron phthalocyanine, (Pc)Fe, and iron octaethylporphyrin, (OEP)Fe, prototypical pyrrolic iron macrocycles. N 1s XPS signatures for coordinated N atoms in (phen<sub>2</sub>N<sub>2</sub>)Fe are positively shifted relative to (Pc)Fe and (OEP)Fe, and overlay with those of Fe-N-C. Likewise, spectroscopic XAS signatures of (phen<sub>2</sub>N<sub>2</sub>)Fe are distinct from those of both (Pc)Fe and (OEP)Fe, and are remarkably similar to those of Fe-N-C with compressed Fe–N bond lengths of 1.97 Å in (phen<sub>2</sub>N<sub>2</sub>)Fe that are close to the average 1.94 Å length in Fe-N-C. Electrochemical studies establish that both (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe have relatively high Fe(III/II) potentials at ~0.6 V, ~300 mV positive of (OEP)Fe. The ORR onset potential is found to directly correlate with the Fe(III/II) potential leading to a ~300 mV positive shift in the onset of ORR for (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe relative to (OEP)Fe. Consequently, the ORR onset for (phen<sub>2</sub>N<sub>2</sub>)Fe and (Pc)Fe is within 150 mV of Fe-N-C. Unlike (OEP)Fe and (Pc)Fe, (phen<sub>2</sub>N<sub>2</sub>)Fe displays excellent selectivity for 4-electron ORR with <4% maximum H<sub>2</sub>O<sub>2</sub> production, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data establish (phen<sub>2</sub>N<sub>2</sub>)Fe as a pyridinic iron macrocycle that effectively models Fe-N-C active sites, thereby providing a rich molecular platform for understanding this important class of catalytic materials.<p><b></b></p>


Sign in / Sign up

Export Citation Format

Share Document