Penetration of Arsenic and Deactivation of a Honeycomb V2O5–WO3/TiO2 Catalyst in a Glass Furnace

Author(s):  
Gongda Chen ◽  
Shangchao Xiong ◽  
Xiaoping Chen ◽  
Xuefeng Chu ◽  
Rongqiang Yin ◽  
...  
Keyword(s):  
2019 ◽  
Vol 232 ◽  
pp. 88-98 ◽  
Author(s):  
Jian Liu ◽  
Rui-tang Guo ◽  
Xiao Sun ◽  
Wei-guo Pan ◽  
Zhong-yi Wang ◽  
...  
Keyword(s):  

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 618
Author(s):  
Huan Du ◽  
Zhitao Han ◽  
Xitian Wu ◽  
Chenglong Li ◽  
Yu Gao ◽  
...  

Er-modified FeMn/TiO2 catalysts were prepared through the wet impregnation method, and their NH3-SCR activities were tested. The results showed that Er modification could obviously promote SO2 resistance of FeMn/TiO2 catalysts at a low temperature. The promoting effect and mechanism were explored in detail using various techniques, such as BET, XRD, H2-TPR, XPS, TG, and in-situ DRIFTS. The characterization results indicated that Er modification on FeMn/TiO2 catalysts could increase the Mn4+ concentration and surface chemisorbed labile oxygen ratio, which was favorable for NO oxidation to NO2, further accelerating low-temperature SCR activity through the “fast SCR” reaction. As fast SCR reaction could accelerate the consumption of adsorbed NH3 species, it would benefit to restrain the competitive adsorption of SO2 and limit the reaction between adsorbed SO2 and NH3 species. XPS results indicated that ammonium sulfates and Mn sulfates formed were found on Er-modified FeMn/TiO2 catalyst surface seemed much less than those on FeMn/TiO2 catalyst surface, suggested that Er modification was helpful for reducing the generation or deposition of sulfate salts on the catalyst surface. According to in-situ DRIFTS the results of, the presence of SO2 in feeding gas imposed a stronger impact on the NO adsorption than NH3 adsorption on Lewis acid sites of Er-modified FeMn/TiO2 catalysts, gradually making NH3-SCR reaction to proceed in E–R mechanism rather than L–H mechanism. DRIFTS.


Author(s):  
Marta K. Richards ◽  
Kenneth G. Partymiller ◽  
Joseph W. Dauchy ◽  
Kenneth W. Brown

2021 ◽  
Author(s):  
Javier Ivanez ◽  
Patricia Garcia-Munoz ◽  
Agnieszka M. Ruppert ◽  
Nicolas Keller

Vacuum ◽  
2021 ◽  
pp. 110384
Author(s):  
Junqiang Xu ◽  
Xianlin Zou ◽  
Guorong Chen ◽  
Yanrong Zhang ◽  
Qiang Zhang ◽  
...  

2008 ◽  
Vol 39-40 ◽  
pp. 607-612
Author(s):  
Bernhard Fleischmann

A part of a soldier block, placed in a float glass furnace near the hot spot area, was investigated to learn about the changes in the microstructure during the production of the block, during the use for glass melting and after the shut down of the furnace and the cooling of the block. Beside the three phases after the production (baddeleyite, corundum, vitreous phase) during use as a soldier block mullite and secondary corundum as well as secondary zirconia may occure. Cooling down the used block after the furnace campaign the beginning of the crystallisation of feldspars may be seen.


Sign in / Sign up

Export Citation Format

Share Document