Effects of Deepwater Horizon Oil on the Movement and Survival of Marsh Periwinkle Snails (Littoraria irrorata)

2017 ◽  
Vol 51 (15) ◽  
pp. 8757-8762 ◽  
Author(s):  
T. Ross Garner ◽  
Michael A. Hart ◽  
Lauren E. Sweet ◽  
Hanna T. J. Bagheri ◽  
Jeff Morris ◽  
...  

2020 ◽  
Vol 160 ◽  
pp. 111581 ◽  
Author(s):  
Donald R. Deis ◽  
John W. Fleeger ◽  
David S. Johnson ◽  
Irving A. Mendelssohn ◽  
Qianxin Lin ◽  
...  


2014 ◽  
Vol 2014 (1) ◽  
pp. 1985-1999 ◽  
Author(s):  
Scott Zengel ◽  
Nicolle Rutherford ◽  
Brittany Bernik ◽  
Zachary Nixon ◽  
Jacqueline Michel

ABSTRACT The Deepwater Horizon oil spill resulted in persistent heavy oiling in salt marshes, particularly in northern Barataria Bay, Louisiana. Oiling conditions and several ecological variables were compared among reference plots and three types of heavily oiled plots located along a continuous shoreline area in northern Barataria Bay: oiled control plots, mechanical treatment plots, and mechanical treatment plots coupled with vegetation planting (Spartina alterniflora). Data were collected more than three years following initial oiling and two years following cleanup treatments and planting. Salt marsh oiling and associated impacts were apparent across all oiling/treatment classes relative to reference conditions. Mechanical treatment with planting showed the most improvement in oiling conditions and was also effective in re-establishing vegetation cover and plant species composition similar to reference conditions, in contrast to the oiled controls and mechanical treatment plots without planting. Marsh periwinkle (Littoraria irrorata) recovery was limited across all oiling/treatment classes relative to reference. Impacts to fiddler crabs (Uca spp.) were also documented in the heavily oiled plots. Positive influences of mechanical treatment and planting on macroinvertebrate recovery were observed; however, invertebrate recovery may lag the return of Spartina alterniflora by several years. Vegetation planting should be considered as a spill response and emergency restoration option for heavily oiled salt marshes where vegetation impacts are substantial, natural recovery may be lacking or delayed, intensive cleanup treatments are used, or where marsh shorelines are at risk of erosion.



2016 ◽  
Vol 50 (2) ◽  
pp. 643-652 ◽  
Author(s):  
Scott Zengel ◽  
Clay L. Montague ◽  
Steven C. Pennings ◽  
Sean P. Powers ◽  
Marla Steinhoff ◽  
...  


2017 ◽  
Vol 576 ◽  
pp. 135-144 ◽  
Author(s):  
S Zengel ◽  
J Weaver ◽  
SC Pennings ◽  
B Silliman ◽  
DR Deis ◽  
...  


2016 ◽  
Vol 561 ◽  
pp. 51-68 ◽  
Author(s):  
AWJ Demopoulos ◽  
JR Bourque ◽  
E Cordes ◽  
KM Stamler


Shore & Beach ◽  
2020 ◽  
pp. 65-71
Author(s):  
Whitney Thompson ◽  
Christopher Paul ◽  
John Darnall

Coastal Louisiana received significant funds tied to BP penalties as a result of the Deepwater Horizon incident. As it is widely considered that the State of Louisiana sustained most of the damage due to this incident, there has been a firm push to waste no time in implementing habitat restoration projects. Sustaining the land on the coast of Louisiana is vital to our nation’s economy, as several of the nation’s largest ports are located on the Gulf coast in Louisiana. In addition, the ecosystems making up the Louisiana coast are important to sustain some of the largest and most valuable fisheries in the nation. Funded by BP Phase 3 Early Restoration, the goals of the Natural Resource Damage Assessment (NRDA) Outer Coast Restoration Project are to restore beach, dune, and marsh habitats to help compensate spill-related injuries to habitats and species, specifically brown pelicans, terns, skimmers, and gulls. Four island components in Louisiana were funded under this project; Shell Island Barrier Restoration, Chenier Ronquille Barrier Island Restoration, Caillou Lake Headlands Barrier Island Restoration, and North Breton Island Restoration (https://www. gulfspillrestoration.noaa.gov/louisiana-outer-coast-restoration, NOAA 2018). Shell Island and Chenier Ronquille are critical pieces of barrier shoreline within the Barataria Basin in Plaquemines Parish, Louisiana. These large-scale restoration projects were completed in the years following the Deepwater Horizon incident, creating new habitat and reinforcing Louisiana’s Gulf of Mexico shoreline. The Louisiana Coastal Protection and Restoration Authority (CPRA) finished construction of the Shell Island NRDA Restoration Project in 2017, which restored two barrier islands in Plaquemines Parish utilizing sand hydraulically dredged from the Mississippi River and pumped via pipeline over 20 miles over levees and through towns, marinas, and marshes to the coastline. The National Marine Fisheries Service (NMFS) also completed the Plaquemines Parish barrier island restoration at Chenier Ronquille in 2017 utilizing nearshore Gulf of Mexico sediment, restoring wetland, coastal, and nearshore habitat in the Barataria Basin. A design and construction overview is provided herein.



Sign in / Sign up

Export Citation Format

Share Document