island restoration
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 17)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Jenny Davis ◽  
Paula Whitfield ◽  
Danielle Szimanski ◽  
Becky Raves Golden ◽  
Matt Whitbeck ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 642 ◽  
Author(s):  
John W. Day ◽  
William H. Conner ◽  
Ronald D. DeLaune ◽  
Charles S. Hopkinson ◽  
Rachael G. Hunter ◽  
...  

Here we review an extensive series of studies of Barataria Basin, an economically and ecologically important coastal basin of the Mississippi Delta. Human activity has greatly altered the hydrology of the basin by decreasing riverine inflows from leveeing of the river and its distributaries, increasing runoff with high nutrient concentrations from agricultural fields, and channelization of wetlands of the basin interior that has altered flow paths to often bypass wetlands. This has resulted in degraded water quality in the upper basin and wetland loss in the lower basin. Trophic state analysis found the upper basin to be eutrophic and the lower basin to be mesotrophic. Gross aquatic primary production (GAPP) was highest in the upper basin, lowest in the mid basin, and intermediate in the lower basin. Forested wetlands in the upper basin have degraded over the past several decades due to increased periods of flooding, while there has been massive loss of emergent wetlands in the lower basin due to increasing water levels and pervasive alteration of hydrology. Restoration will entail reconnection of waterways with surrounding wetlands in the upper basin, and implementation of river sediment diversions, marsh creation using dredged sediments and barrier island restoration. Findings from this review are discussed in terms of the functioning of deltas globally.


2021 ◽  
Vol 14 ◽  
pp. 117862212110094
Author(s):  
Laura M Norman ◽  
H Ronald Pulliam ◽  
Michele M Girard ◽  
Steve M Buckley ◽  
Louise Misztal ◽  
...  

The Sky Island Restoration Collaborative (SIRC) is a growing partnership between government agencies, nonprofit organizations, and private landowners in southeast Arizona, the United States, and northern Sonora, Mexico. Starting in 2014 as an experiment to cultivate restoration efforts by connecting people across vocations and nations, SIRC has evolved over 5 years into a flourishing landscape-restoration initiative. The group is founded on the concept of developing a restoration economy, where ecological and socioeconomic benefits are interconnected and complimentary. The variety of ideas, people, field sites, administration, and organizations promote learning and increase project success through iterative adaptive management, transparency, and sharing. The collaborative seeks to make restoration self-sustaining and improve quality of life for citizens living along the US-Mexico border. Research and experiments are developed between scientists and practitioners to test hypotheses, qualify procedures, and quantify impacts on shared projects. Simultaneously, partners encourage and facilitate connecting more people to the landscape—via volunteerism, internships, training, and mentoring. Through this history, SIRC’s evolution is pioneering the integration of community and ecological restoration to protect biodiversity in the Madrean Archipelago Ecoregion. This editorial introduces SIRC as a unique opportunity for scientists and practitioners looking to engage in binational partnerships and segues into this special journal issue we have assembled that relates new findings in the field of restoration ecology.


2021 ◽  
Author(s):  
Alan Saunders ◽  
David Towns ◽  
Keith Broome ◽  
Stephen Horn ◽  
Sue Neureuter ◽  
...  

Author(s):  
Paula Whitfield ◽  
Jenny Davis ◽  
Danielle Szimanski ◽  
Jeffrey King ◽  
Joe Gailani ◽  
...  

The coastal islands and marshes of Chesapeake Bay USA, are disappearing along with the ecosystem services and infrastructure/shoreline protection they provide. To counter such losses, the USACE Baltimore District is restoring historic island footprints using dredged sediments. Islands constitute an important natural and nature-based feature (NNBF) that meet the 'triple win outcomes' of USACE's Engineering With Nature (EWN) initiative, by providing economic, social and environmental benefits. Here we highlight the restoration and monitoring of Swan Island using 61,000 cubic yards of dredged sediment. The creation/expansion of Swan Island, is expected to produce significant benefits in terms of ecosystem services, increased resilience to future sea level rise, and abatement of erosive losses to an adjacent coastal community. The pre- and post-restoration monitoring and model development by project partners will serve to quantify the benefits and efficacy of the island restoration thereby facilitating island restoration as a viable NNBF option in the future.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/2kvSVcH2KuE


2020 ◽  
Author(s):  
Victor Gonzalez ◽  
Fabian Garcia-Moreno ◽  
Jeffrey Melby ◽  
Norberto Nadal-Caraballo ◽  
Elizabeth Godsey

Shore & Beach ◽  
2020 ◽  
pp. 65-71
Author(s):  
Whitney Thompson ◽  
Christopher Paul ◽  
John Darnall

Coastal Louisiana received significant funds tied to BP penalties as a result of the Deepwater Horizon incident. As it is widely considered that the State of Louisiana sustained most of the damage due to this incident, there has been a firm push to waste no time in implementing habitat restoration projects. Sustaining the land on the coast of Louisiana is vital to our nation’s economy, as several of the nation’s largest ports are located on the Gulf coast in Louisiana. In addition, the ecosystems making up the Louisiana coast are important to sustain some of the largest and most valuable fisheries in the nation. Funded by BP Phase 3 Early Restoration, the goals of the Natural Resource Damage Assessment (NRDA) Outer Coast Restoration Project are to restore beach, dune, and marsh habitats to help compensate spill-related injuries to habitats and species, specifically brown pelicans, terns, skimmers, and gulls. Four island components in Louisiana were funded under this project; Shell Island Barrier Restoration, Chenier Ronquille Barrier Island Restoration, Caillou Lake Headlands Barrier Island Restoration, and North Breton Island Restoration (https://www. gulfspillrestoration.noaa.gov/louisiana-outer-coast-restoration, NOAA 2018). Shell Island and Chenier Ronquille are critical pieces of barrier shoreline within the Barataria Basin in Plaquemines Parish, Louisiana. These large-scale restoration projects were completed in the years following the Deepwater Horizon incident, creating new habitat and reinforcing Louisiana’s Gulf of Mexico shoreline. The Louisiana Coastal Protection and Restoration Authority (CPRA) finished construction of the Shell Island NRDA Restoration Project in 2017, which restored two barrier islands in Plaquemines Parish utilizing sand hydraulically dredged from the Mississippi River and pumped via pipeline over 20 miles over levees and through towns, marinas, and marshes to the coastline. The National Marine Fisheries Service (NMFS) also completed the Plaquemines Parish barrier island restoration at Chenier Ronquille in 2017 utilizing nearshore Gulf of Mexico sediment, restoring wetland, coastal, and nearshore habitat in the Barataria Basin. A design and construction overview is provided herein.


Shore & Beach ◽  
2020 ◽  
pp. 102-109
Author(s):  
Syed Khalil ◽  
Beth Forrest ◽  
Mike Lowiec ◽  
Beau Suthard ◽  
Richard Raynie ◽  
...  

The System Wide Assessment and Monitoring Program (SWAMP) was implemented by the Louisiana Coastal Protection and Restoration Authority (CPRA) to develop an Adaptive Management Implementation Plan (AMIP). SWAMP ensures that a comprehensive network of coastal data collection/monitoring activities is in place to support the development and implementation of Louisiana’s coastal protection and restoration program. Monitoring of physical terrain is an important parameter of SWAMP. For the first time a systematic approach was adopted to undertake a geophysical (bathymetric, side-scan sonar, sub-bottom profile, and magnetometer) survey along more than 5,000 nautical miles (nm) (excluding the 1,559 nm currently being surveyed from west of Terrebonne Bay to Sabine Lake) of track-line in almost all of the bays and lakes from Chandeleur Sound in the east to Terrebonne Bay in the west. This data collection effort complements the regional bathymetric survey undertaken under the Barrier Island Comprehensive Monitoring (BICM) Program in the adjacent offshore areas. This paper describes how a study of this magnitude was conceptualized, planned, and executed along the entire Louisiana coast. It is important to note that the initial intent was to collect bathymetric data only for numerical modelling for ecosystem restoration and storm surge prediction. Geophysical data were added for oyster identification and delineation. These first-order data also help comprehend the regional subsurface geology essential for sediment exploration to support Louisiana’s marsh and barrier island restoration projects.


Shore & Beach ◽  
2020 ◽  
pp. 49-57
Author(s):  
Joseph Long ◽  
P. Soupy Dalyander ◽  
Michael Poff ◽  
Brian Spears ◽  
Brett Borne ◽  
...  

An interdisciplinary project team was convened to develop a modeling framework that simulates the potential impacts of storms and sea level-rise to habitat availability at Breton Island, Louisiana, for existing conditions and potential future restoration designs. The model framework was iteratively developed through evaluation of model results at multiple checkpoints. A methodology was developed for characterizing regional wave and water levels, and the numerical model XBeach was used to simulate the potential impacts from a wide range of storm events. Simulations quantified the potential for erosion, overwash, and inundation of the pre- and post-restoration beach and dune system and were used as a preliminary screening of restoration designs. The model framework also incorporated a computationally efficient method to evaluate the impacts of storms, long-term shoreline changes, and relative sea level rise over a 15-year time period, in order to evaluate the effect of the preferred restoration alternative on habitat distribution. Results directly informed engineering design decisions and expedited later project stages including the construction permitting process.


Sign in / Sign up

Export Citation Format

Share Document