transcriptional response
Recently Published Documents


TOTAL DOCUMENTS

2208
(FIVE YEARS 768)

H-INDEX

102
(FIVE YEARS 11)

2022 ◽  
Vol 10 (1) ◽  
pp. 194
Author(s):  
Fani Ntana ◽  
Sean R. Johnson ◽  
Björn Hamberger ◽  
Birgit Jensen ◽  
Hans J. L. Jørgensen ◽  
...  

Specialised metabolites produced during plant-fungal associations often define how symbiosis between the plant and the fungus proceeds. They also play a role in the establishment of additional interactions between the symbionts and other organisms present in the niche. However, specialised metabolism and its products are sometimes overlooked when studying plant-microbe interactions. This limits our understanding of the specific symbiotic associations and potentially future perspectives of their application in agriculture. In this study, we used the interaction between the root endophyte Serendipita indica and tomato (Solanum lycopersicum) plants to explore how specialised metabolism of the host plant is regulated upon a mutualistic symbiotic association. To do so, tomato seedlings were inoculated with S. indica chlamydospores and subjected to RNAseq analysis. Gene expression of the main tomato specialised metabolism pathways was compared between roots and leaves of endophyte-colonised plants and tissues of endophyte-free plants. S. indica colonisation resulted in a strong transcriptional response in the leaves of colonised plants. Furthermore, the presence of the fungus in plant roots appears to induce expression of genes involved in the biosynthesis of lignin-derived compounds, polyacetylenes, and specific terpenes in both roots and leaves, whereas pathways producing glycoalkaloids and flavonoids were expressed in lower or basal levels.


2022 ◽  
Author(s):  
Jack A Prescott ◽  
Kathryn Balmanno ◽  
Jennifer P Mitchell ◽  
Hanneke Okkenhaug ◽  
Simon J Cook

Inhibitor of kappa B (IκB) kinase β (IKKβ) has long been viewed as the dominant IKK in the canonical nuclear factor-κB (NF-κB) signalling pathway, with IKKα being more important in non-canonical NF-κB activation. Here we have investigated the role of IKKα and IKKβ in canonical NF-κB activation in colorectal cells using CRISPR-Cas9 knock-out cell lines, siRNA and selective IKKβ inhibitors. IKKα and IKKβ were redundant for IκBα phosphorylation and turnover since loss of IKKα or IKKβ alone had little (SW620 cells) or no (HCT116 cells) effect. However, in HCT116 cells IKKα was the dominant IKK required for basal phosphorylation of p65 at S536, stimulated phosphorylation of p65 at S468, nuclear translocation of p65 and the NF-κB-dependent transcriptional response to both TNFα and IL-1α. In these cells IKKβ was far less efficient at compensating for the loss of IKKα than IKKα was able to compensate for the loss of IKKβ. This was confirmed when siRNA was used to knock-down the non-targeted kinase in single KO cells. Critically, the selective IKKβ inhibitor BIX02514 confirmed these observations in WT cells and similar results were seen in SW620 cells. Notably, whilst IKKα loss strongly inhibited TNFα-dependent p65 nuclear translocation, IKKα and IKKβ contributed equally to c-Rel nuclear translocation indicating that different NF-κB subunits exhibit different dependencies on these IKKs. These results demonstrate a major role for IKKα in canonical NF-κB signalling in colorectal cells and may be relevant to efforts to design IKK inhibitors, which have focused largely on IKKβ to date.


2022 ◽  
Author(s):  
Zhengjun Zhang

Genes functionally associated with SARS-CoV-2 and genes functionally related to COVID-19 disease can be different, whose distinction will become the first essential step for successfully fighting against the COVID-19 pandemic. Unfortunately, this first step has not been completed in all biological and medical research. Using a newly developed max-competing logistic classifier, two genes, ATP6V1B2 and IFI27, stand out to be critical in transcriptional response to SARS-CoV-2 with differential expressions derived from NP/OP swab PCR. This finding is evidenced by combining these two genes with one another gene in predicting disease status to achieve better-indicating power than existing classifiers with the same number of genes. In addition, combining these two genes with three other genes to form a five-gene classifier outperforms existing classifiers with ten or more genes. With their exceptional predicting power, these two genes can be critical in fighting against the COVID-19 pandemic as a new focus and direction. Comparing the functional effects of these genes with a five-gene classifier with 100% accuracy identified and tested from blood samples in the literature, genes and their transcriptional response and functional effects to SARS-CoV-2 and genes and their functional signature patterns to COVID-19 antibody are significantly different, which can be interpreted as the former is the point of a phenomenon, and the latter is the essence of the disease. Such significant findings can help explore the causal and pathological clue between SARS-CoV-2 and COVID-19 disease and fight against the disease with more targeted vaccines, antiviral drugs, and therapies.


2022 ◽  
Vol 23 (2) ◽  
pp. 821
Author(s):  
Florian Rosier ◽  
Nicolas Fernandez Nuñez ◽  
Magali Torres ◽  
Béatrice Loriod ◽  
Pascal Rihet ◽  
...  

Mortality due to sepsis remains unacceptably high, especially for septic shock patients. Murine models have been used to better understand pathophysiology mechanisms. However, the mouse model is still under debate. Herein we investigated the transcriptional response of mice injected with lipopolysaccharide (LPS) and compared it to either human cells stimulated in vitro with LPS or to the blood cells of septic patients. We identified a molecular signature composed of 2331 genes with an FDR median of 0%. This molecular signature is highly enriched in regulated genes in peritoneal macrophages stimulated with LPS. There is significant enrichment in several inflammatory signaling pathways, and in disease terms, such as pneumonia, sepsis, systemic inflammatory response syndrome, severe sepsis, an inflammatory disorder, immune suppression, and septic shock. A significant overlap between the genes upregulated in mouse and human cells stimulated with LPS has been demonstrated. Finally, genes upregulated in mouse cells stimulated with LPS are enriched in genes upregulated in human cells stimulated in vitro and in septic patients, who are at high risk of death. Our results support the hypothesis of common molecular and cellular mechanisms between mouse and human sepsis.


Author(s):  
Mathew J. Baldwin ◽  
Jolet Y. Mimpen ◽  
Adam P. Cribbs ◽  
Edward Stace ◽  
Martin Philpott ◽  
...  

Biomaterial augmentation of surgically repaired rotator cuff tendon tears aims to improve the high failure rates (∼40%) of traditional repairs. Biomaterials that can alter cellular phenotypes through the provision of microscale topographical cues are now under development. We aimed to systematically evaluate the effect of topographic architecture on the cellular phenotype of fibroblasts from healthy and diseased tendons. Electrospun polydioxanone scaffolds with fiber diameters ranging from 300 to 4000 nm, in either a highly aligned or random configuration, were produced. Healthy tendon fibroblasts cultured for 7 days on scaffolds with highly aligned fibers demonstrated a distinctive elongated morphology, whilst those cultured on randomly configured fibers demonstrated a flattened and spread morphology. The effect of scaffold micro-architecture on the transcriptome of both healthy and diseased tendon fibroblasts was assessed with bulk RNA-seq. Both healthy (n = 3) and diseased tendon cells (n = 3) demonstrated a similar transcriptional response to architectural variants. Gene set enrichment analysis revealed that large diameter (≥2000 nm) aligned scaffolds induced an upregulation of genes involved in cellular replication and a downregulation of genes defining inflammatory responses and cell adhesion. Similarly, PDPN and CD248, markers of inflammatory or “activated” fibroblasts, were downregulated during culture of both healthy and diseased fibroblasts on aligned scaffolds with large (≥2000 nm) fiber diameters. In conclusion scaffold architectures resembling that of disordered type III collagen, typically present during the earlier phases of wound healing, resulted in tendon fibroblast activation. Conversely, scaffolds mimicking aligned diameter collagen I fibrils, present during tissue remodelling, did not activate tendon derived fibroblasts. This has implications for the design of scaffolds used during rotator cuff repair augmentation.


2022 ◽  
Vol 103 (1) ◽  
Author(s):  
Michael Leitner ◽  
Kayvan Etebari ◽  
Sassan Asgari

Mosquito-borne flaviviruses are responsible for viral infections and represent a considerable public health burden. Aedes aegypti is the principal vector of dengue virus (DENV), therefore understanding the intrinsic virus–host interactions is vital, particularly in the presence of the endosymbiont Wolbachia, which blocks virus replication in mosquitoes. Here, we examined the transcriptional response of Wolbachia -transinfected Ae. aegypti Aag2 cells to DENV infection. We identified differentially expressed immune genes that play a key role in the activation of anti-viral defence such as the Toll and immune deficiency pathways. Further, genes encoding cytosine and N6-adenosine methyltransferases and SUMOylation, involved in post-transcriptional modifications, an antioxidant enzyme, and heat-shock response were up-regulated at the early stages of DENV infection and are reported here for the first time. Additionally, several long non-coding RNAs were among the differentially regulated genes. Our results provide insight into Wolbachia -transinfected Ae. aegypti’s initial virus recognition and transcriptional response to DENV infection.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 81
Author(s):  
Taehoon Kim ◽  
Fábio Ometto Dias ◽  
Agustina Gentile ◽  
Marcelo Menossi ◽  
Kevin Begcy

RNA polymerase II is an essential multiprotein complex that transcribes thousands of genes, being a fundamental component of the transcription initiation complex. In eukaryotes, RNA polymerase II is formed by a 10-multisubunit conserved core complex, and two additional peripheral subunits, Rpb4 and Rpb7, form the Rpb4/7 subcomplex. Although transcription is vital for cell and organismal viability, little is known about the transcription initiation complex in sugarcane. An initial characterization of the sugarcane RNA polymerase subunit IV (ScRpb4) was performed. Our results demonstrate that ScRpb4 is evolutionarily conserved across kingdoms. At the molecular level, ScRpb4 expression was found in vegetative and reproductive tissues. Furthermore, the expression of ScRpb4 remained stable under various stress conditions, most likely to ensure a proper transcriptional response. Optimal conditions to express ScRpb4 in vitro for further studies were also identified. In this study, an initial characterization of the sugarcane polymerase II subunit IV is presented. Our results open the window to more specific experiments to study ScRpb4 function, for instance, crystal structure determination and pull-down assays as well as their function under biotic and abiotic stresses.


Author(s):  
Amanjot Singh ◽  
Arvind Reddy Kandi ◽  
Deepa Jayaprakashappa ◽  
Guillaume Thuery ◽  
Devam J Purohit ◽  
...  

Cells respond to stress with translational arrest, robust transcriptional changes, and transcription-independent formation of mRNP assemblies termed stress granules (SGs). Despite considerable interest in the role of SGs in oxidative, unfolded-protein and viral stress responses, whether and how SGs contribute to stress-induced transcription has not been rigorously examined. To address this, we characterized transcriptional changes in Drosophila S2 cells induced by acute oxidative-stress and assessed how these were altered under conditions that disrupted SG assembly. Oxidative stress for 3-hours predominantly resulted in induction or upregulation of stress-responsive mRNAs whose levels peaked during recovery after stress cessation. The stress-transcriptome is enriched in mRNAs coding for chaperones, including HSP70s, small heat shock proteins, glutathione transferases, and several non-coding RNAs. Oxidative stress also induced cytoplasmic SGs that disassembled 3-hours after stress cessation. As expected, RNAi-mediated knockdown of the conserved G3BP1/Rasputin protein inhibited SG assembly. However, this disruption had no significant effect on the stress-induced transcriptional response or stress-induced translational arrest. Thus, SG assembly and stress-induced gene expression alterations appear to be driven by distinctive signaling processes. We suggest that while SG assembly represents a fast, transient mechanism, the transcriptional response enables a slower, longer-lasting mechanism for adaptation to and recovery from cell stress.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Inês Páscoa ◽  
Elza Fonseca ◽  
Renato Ferraz ◽  
André M. Machado ◽  
Francisca Conrado ◽  
...  

Three peroxisome proliferator-activated receptor paralogues (PPARα, -β and -γ) are currently recognized in vertebrate genomes. PPARγ is known to modulate nutrition, adipogenesis and immunity in vertebrates. Natural ligands of PPARγ have been proposed; however, the receptor also binds synthetic ligands such as endocrine disruptors. Two paralogues of PPARα and PPARβ have been documented in teleost species, a consequence of the 3R WGD. Recently, two PPARγ paralogue genes were also identified in Astyanax mexicanus. We aimed to determine whether the presence of two PPARγ paralogues is prevalent in other teleost genomes, through genomic and phylogenetic analysis. Our results showed that besides Characiformes, two PPARγ paralogous genes were also identified in other teleost taxa, coinciding with the teleost-specific, whole-genome duplication and with the retention of both genes prior to the separation of the Clupeocephala. To functionally characterize these genes, we used the European sardine (Sardina pilchardus) as a model. PPARγA and PPARγB display a different tissue distribution, despite the similarity of their functional profiles: they are unresponsive to tested fatty acids and other human PPARγ ligands yet yield a transcriptional response in the presence of tributyltin (TBT). This observation puts forward the relevance of comparative analysis to decipher alternative binding architectures and broadens the disruptive potential of man-made chemicals for aquatic species.


Sign in / Sign up

Export Citation Format

Share Document