Contribution of Regionalized Methane Emissions to Greenhouse Gas Intensity of Natural Gas-Fired Electricity and Carbon Capture in the United States

Author(s):  
Diana Burns ◽  
Emily Grubert
2014 ◽  
Vol 49 (1) ◽  
pp. 641-648 ◽  
Author(s):  
David T. Allen ◽  
David W. Sullivan ◽  
Daniel Zavala-Araiza ◽  
Adam P. Pacsi ◽  
Matthew Harrison ◽  
...  

2018 ◽  
Vol 52 (21) ◽  
pp. 12915-12925 ◽  
Author(s):  
Mark Omara ◽  
Naomi Zimmerman ◽  
Melissa R. Sullivan ◽  
Xiang Li ◽  
Aja Ellis ◽  
...  

2019 ◽  
Author(s):  
Selina Roman-White ◽  
Srijana Rai ◽  
James Littlefield ◽  
Greg Cooney ◽  
Timothy J Skone

2014 ◽  
Vol 49 (1) ◽  
pp. 633-640 ◽  
Author(s):  
David T. Allen ◽  
Adam P. Pacsi ◽  
David W. Sullivan ◽  
Daniel Zavala-Araiza ◽  
Matthew Harrison ◽  
...  

2013 ◽  
Vol 110 (44) ◽  
pp. 17768-17773 ◽  
Author(s):  
D. T. Allen ◽  
V. M. Torres ◽  
J. Thomas ◽  
D. W. Sullivan ◽  
M. Harrison ◽  
...  

2015 ◽  
Vol 49 (15) ◽  
pp. 9374-9383 ◽  
Author(s):  
Daniel J. Zimmerle ◽  
Laurie L. Williams ◽  
Timothy L. Vaughn ◽  
Casey Quinn ◽  
R. Subramanian ◽  
...  

2020 ◽  
Author(s):  
Pieternel Levelt ◽  
Pepijn Veefkind ◽  
Esther Roosenbrand ◽  
John Lin ◽  
Jochen Landgraf ◽  
...  

<p>Production of oil and natural gas in North America is at an all-time high due to the development and use of horizontal drilling and hydraulic fracturing. Methane emissions associated with this industrial activity are a concern because of the contribution to climate radiative forcing. We present new measurements from the space-based TROPOspheric Monitoring Instrument (TROPOMI) launched in 2017 that show methane enhancements over production regions in the United States. Using methane and NO<sub>2</sub> column measurements from the new TROPOMI instrument, we show that emissions from oil and gas production in the Uintah and Permian Basins can be observed in the data from individual overpasses. This is a vast improvement over measurements from previous satellite instruments, which typically needed to be averaged over a year or more to quantify trends and regional enhancements in methane emissions. In the Uintah Basin in Utah, TROPOMI methane columns correlated with in-situ measurements, and the highest columns were observed over the deepest parts of the basin, consistent with the accumulation of emissions underneath inversions. In the Permian Basin in Texas and New Mexico, methane columns showed maxima over regions with the highest natural gas production and were correlated with nitrogen-dioxide columns at a ratio that is consistent with results from in-situ airborne measurements. The improved detail provided by TROPOMI will likely enable the timely monitoring from space of methane and NO2 emissions associated with regular oil and natural gas production.</p>


Sign in / Sign up

Export Citation Format

Share Document