scholarly journals Daily Satellite Observations of Methane from Oil and Gas Production Regions in the United States

Author(s):  
Pieternel Levelt ◽  
Pepijn Veefkind ◽  
Esther Roosenbrand ◽  
John Lin ◽  
Jochen Landgraf ◽  
...  

<p>Production of oil and natural gas in North America is at an all-time high due to the development and use of horizontal drilling and hydraulic fracturing. Methane emissions associated with this industrial activity are a concern because of the contribution to climate radiative forcing. We present new measurements from the space-based TROPOspheric Monitoring Instrument (TROPOMI) launched in 2017 that show methane enhancements over production regions in the United States. Using methane and NO<sub>2</sub> column measurements from the new TROPOMI instrument, we show that emissions from oil and gas production in the Uintah and Permian Basins can be observed in the data from individual overpasses. This is a vast improvement over measurements from previous satellite instruments, which typically needed to be averaged over a year or more to quantify trends and regional enhancements in methane emissions. In the Uintah Basin in Utah, TROPOMI methane columns correlated with in-situ measurements, and the highest columns were observed over the deepest parts of the basin, consistent with the accumulation of emissions underneath inversions. In the Permian Basin in Texas and New Mexico, methane columns showed maxima over regions with the highest natural gas production and were correlated with nitrogen-dioxide columns at a ratio that is consistent with results from in-situ airborne measurements. The improved detail provided by TROPOMI will likely enable the timely monitoring from space of methane and NO2 emissions associated with regular oil and natural gas production.</p>

2014 ◽  
Vol 49 (1) ◽  
pp. 641-648 ◽  
Author(s):  
David T. Allen ◽  
David W. Sullivan ◽  
Daniel Zavala-Araiza ◽  
Adam P. Pacsi ◽  
Matthew Harrison ◽  
...  

2018 ◽  
Vol 52 (21) ◽  
pp. 12915-12925 ◽  
Author(s):  
Mark Omara ◽  
Naomi Zimmerman ◽  
Melissa R. Sullivan ◽  
Xiang Li ◽  
Aja Ellis ◽  
...  

2020 ◽  
Author(s):  
David R. Lyon ◽  
Benjamin Hmiel ◽  
Ritesh Gautam ◽  
Mark Omara ◽  
Kate Roberts ◽  
...  

Abstract. Methane emissions associated with the production, transport, and use of oil and natural gas increase the climatic impacts of energy use; however, little is known about how emissions vary temporally and with commodity prices. We present airborne and ground-based data, supported by satellite observations, to measure weekly to monthly changes in total methane emissions in the United States’ Permian Basin during a period of volatile oil prices associated with the COVID-19 pandemic. As oil prices declined from ~$ 60 to $ 20 per barrel, emissions changed concurrently from 3.4 % to 1.5 % of gas production; as prices partially recovered, emissions increased back to near initial values. Concurrently, total oil and natural gas production only declined by a maximum of ~10 % from the peak values seen in the months prior to the crash. Activity data indicate that a rapid decline in well development and subsequent effects on associated gas flaring and midstream infrastructure throughput are the likely drivers of temporary emission reductions. Our results, along with past satellite observations, suggest that under more typical price conditions, the Permian Basin is in a state of overcapacity in which rapidly growing natural gas production exceeds midstream capacity and leads to high methane emissions.


2014 ◽  
Vol 49 (1) ◽  
pp. 633-640 ◽  
Author(s):  
David T. Allen ◽  
Adam P. Pacsi ◽  
David W. Sullivan ◽  
Daniel Zavala-Araiza ◽  
Matthew Harrison ◽  
...  

2013 ◽  
Vol 110 (44) ◽  
pp. 17768-17773 ◽  
Author(s):  
D. T. Allen ◽  
V. M. Torres ◽  
J. Thomas ◽  
D. W. Sullivan ◽  
M. Harrison ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John C. Lin ◽  
Ryan Bares ◽  
Benjamin Fasoli ◽  
Maria Garcia ◽  
Erik Crosman ◽  
...  

AbstractMethane, a potent greenhouse gas, is the main component of natural gas. Previous research has identified considerable methane emissions associated with oil and gas production, but estimates of emission trends have been inconsistent, in part due to limited in-situ methane observations spanning multiple years in oil/gas production regions. Here we present a unique analysis of one of the longest-running datasets of in-situ methane observations from an oil/gas production region in Utah’s Uinta Basin. The observations indicate Uinta methane emissions approximately halved between 2015 and 2020, along with declining gas production. As a percentage of gas production, however, emissions remained steady over the same years, at ~ 6–8%, among the highest in the U.S. Addressing methane leaks and recovering more of the economically valuable natural gas is critical, as the U.S. seeks to address climate change through aggressive greenhouse emission reductions.


Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Daniel Zavala-Araiza ◽  
Scott C. Herndon ◽  
Joseph R. Roscioli ◽  
Tara I. Yacovitch ◽  
Matthew R. Johnson ◽  
...  

We performed ground-based measurements (downwind, site-wide characterization) of methane emissions from older light oil and natural gas production sites in Alberta, Canada (Red Deer region, 60 measured sites). We developed a distribution of site-based methane emissions and as previously found in production regions in the United States, a small fraction of the sites account for the majority of methane emissions: 20% of the sites emit three quarters of the methane from oil and gas production. Using empirically derived emission factors, we compared an estimate of regional methane emissions, to a top-down airborne-based measurement of the same region. The airborne measurement was 35% lower, though not statistically different (4,800 ± 3,200 vs. 3,100 ± 2,200 kg CH4 h–1). In Alberta, the majority of these oil and gas emissions go unreported under current reporting requirements. Effective mitigation will most likely require frequent monitoring to identify high-emitting sites as well as leaky components that we hypothesize are also a major contributor to emissions.


2020 ◽  
Author(s):  
Dieter Franke ◽  
Andreas Bahr ◽  
Johannes Gütschow ◽  
Martin Blumenberg ◽  
Stefan Ladage ◽  
...  

<p>The worldwide operating petroleum industry is considered as one of the major contributors to global anthropogenic methane emissions. However, not only absolute numbers of methane emissions from oil and natural gas production and distribution vary greatly in different global inventories, also the relative contribution of the oil and the gas sector is under discussion. In different studies, the majority of methane emissions are assigned either to natural gas or to the oil sector. For the climate emission origins are of course irrelevant, however, for the climate budget of natural gas usage it is important to know which emissions are attributable to natural gas and what number is related to oil production with its associated natural gas.</p><p>Here we use the Federal Institute of Geosciences and Natural Resources’ (BGR) worldwide database on natural oil and gas production and consumption, dating back to 1900, and compare it to global bottom-up methane emission inventories. We will present and discuss several regression approaches that fit the global data reasonably well. In addition, methane emissions of country groups are compared to natural oil and gas production and consumption data. This study finds that the emission factors that relate to gas production released during oil and gas extraction likely vary over the time and across different production areas in the world.</p>


Sign in / Sign up

Export Citation Format

Share Document