Two-Binary-Interaction-Parameter Model for Molecular Solute + Ionic Liquid Solution

Author(s):  
Lihang Bai ◽  
Tao Wang ◽  
Patricia B. Weisensee ◽  
Xiangyang Liu ◽  
Maogang He
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1157
Author(s):  
Daniele Tammaro ◽  
Lorenzo Lombardi ◽  
Giuseppe Scherillo ◽  
Ernesto Di Maio ◽  
Navanshu Ahuja ◽  
...  

Optimization of post polymerization processes of polyolefin elastomers (POE) involving solvents is of considerable industrial interest. To this aim, experimental determination and theoretical interpretation of the thermodynamics and mass transport properties of POE-solvent mixtures is relevant. Sorption behavior of n-hexane vapor in a commercial propylene-ethylene elastomer (V8880 VistamaxxTM from ExxonMobil, Machelen, Belgium) is addressed here, determining experimentally the sorption isotherms at temperatures ranging from 115 to 140 °C and pressure values of n-hexane vapor up to 1 atm. Sorption isotherms have been interpreted using a Non Random Lattice Fluid (NRLF) Equation of State model retrieving, from data fitting, the value of the binary interaction parameter for the n-hexane/V8880 system. Both the cases of temperature-independent and of temperature-dependent binary interaction parameter have been considered. Sorption kinetics was also investigated at different pressures and has been interpreted using a Fick’s model determining values of the mutual diffusivity as a function of temperature and of n-hexane/V8880 mixture composition. From these values, n-hexane intra-diffusion coefficient has been calculated interpreting its dependence on mixture concentration and temperature by a semi-empiric model based on free volume arguments.


2012 ◽  
Vol 30 (7) ◽  
pp. 735-747 ◽  
Author(s):  
M. E. Mincher ◽  
D. L. Quach ◽  
Y. J. Liao ◽  
B. J. Mincher ◽  
C. M. Wai

2014 ◽  
Vol 53 (11) ◽  
pp. 5494-5501 ◽  
Author(s):  
Yulun Han ◽  
Cuikun Lin ◽  
Qingguo Meng ◽  
Fengrong Dai ◽  
Andrew G. Sykes ◽  
...  

2016 ◽  
Vol 22 (20) ◽  
pp. 6808-6814 ◽  
Author(s):  
Giuseppe Antonio Elia ◽  
Ulderico Ulissi ◽  
Franziska Mueller ◽  
Jakub Reiter ◽  
Nikolaos Tsiouvaras ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document