enzymatic transesterification
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 37)

H-INDEX

33
(FIVE YEARS 6)

2021 ◽  
Vol 7 (10) ◽  
pp. 822
Author(s):  
María Molina-Gutiérrez ◽  
Lorena Alcaraz ◽  
Félix A. López ◽  
Leonor Rodríguez-Sánchez ◽  
María Jesús Martínez ◽  
...  

In this work, we analyzed the suitability of a versatile recombinant lipase, secreted by Ophiostoma piceae (OPEr) and produced in Pichia pastoris, as a catalyst of the synthesis of biodiesel. The enzyme was immobilized by five covalent procedures and by hydrophobicity on functionalized nanoparticles of magnetite or of a novel Zn/Mn oxide named G1. Then, they were tested for green production of biodiesel by solventless enzymatic transesterification of discarded cooking oil and methanol (1:4) at 25 °C. The results were compared with those shown by free OPEr and the commercial lipases Eversa® and Cal A®. Several preparations with immobilized OPEr produced high synthesis yields (>90% transesterification), comparable to those obtained with Eversa®, the commercial enzyme designed for this application. Three of the biocatalysts maintained their catalytic efficiency for nine cycles. The process catalyzed by AMNP-CH-OPEr was scaled from 500 µL to 25 mL (50 times), improving its efficiency.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1282
Author(s):  
Chengyu Jiang ◽  
Li Wang ◽  
Xin Huang ◽  
Song Zhu ◽  
Chaoyang Ma ◽  
...  

Vinyl stearate was added to enzymatic transesterification of (−)-Epigallocatechin-3-O-gallate (EGCG) to enhance its lipophilicity and antioxidant ability in a non-aqueous system. The lipase DF “Amano” 15 was used as the catalyst. The optimal reaction conditions were: acetonitrile as the solvent, the molar ratio of vinyl stearate: EGCG as 3:1, an enzyme amount of 4.0% (ratio of substrate mass), and a reaction temperature and time of 50 °C and 96 h, respectively, achieving 65.2% EGCG conversion. HPLC–MS and NMR were used to determine the structure of EGCG stearyl derivative (3″,5″-2-O-stearyl-EGCG). The lipophilicity of EGCG stearyl derivatives (3.49 ± 0.34) was higher (5.06 times) than that of the parent EGCG (0.69 ± 0.08). Furthermore, EGCG stearyl derivatives had excellent lipid oxidation compared with BHT, BHA, and parent EGCG. The POVs of soybean oil with EGCG stearyl derivatives (18.17 ± 0.92 mEq/kg) were significantly reduced (by 62.5%) at 21 d compared with those of EGCG (48.50 ± 1.23 mEq/kg). These results indicate that EGCG derivatives have broad antioxidant application prospects in lipophilic environments/high-fat food.


2021 ◽  
Author(s):  
Arash Davoodimehr ◽  
Tahereh Nematian ◽  
alireza shakeri ◽  
Nasser Ghaemi

Abstract BackgroundEnzyme immobilization is efficient tool to reduce enzymatic processes cost and improve catalyst stability. The enzymatic catalytic transesterification reaction of castor oil was studied for the production of biodiesel. In this research, castor seeds oil was extracted and used along with methanol as substrates for enzymatic transesterification reaction. Porcine pancreatic lipase (PPL) immobilized on calcium alginate (Ca-Alg) and mesoporous SBA-15 supports identified, and its potential was investigated for used as the reaction catalyst.ResultsThe mesoporous SBA-15 supports with a high specific surface area (519.25 m2/g) and the pore diameter (83.2 Å) was suitable for immobilization of the PPL with 4.6⨯2.6⨯1.1 nm3 dimensions. The effect of temperature, biocatalyst concentration, methanol/oil molar ratio and water content on biodiesel conversion were investigated in presents of PPL immobilized on mesoporous SBA-15-OH-NH2-GA. The biodiesel conversion in the presence of PPL immobilized on SBA-15-OH-NH2-GA and Ca-Alg was calculated 88.6% and 77.65% in optimal conditions respectively. Conclusions The result indicate that castor plant has a very high potential for use in the future of the biodiesel industry as a substrate for transesterification reaction. The biodiesel production efficiency is higher when the PPL is immobilized on the SBA-15-OH-NH2-GA toward than conditions that immobilized on the Ca-Alg.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 700
Author(s):  
Vegneshwaran V. Ramakrishnan ◽  
Deepika Dave ◽  
Yi Liu ◽  
Winny Routray ◽  
Wade Murphy

The enzymatic transesterification of Atlantic salmon (Salmo salar) oil was carried out using Novozym 435 (immobilized lipase from Candida antartica) to produce biodiesel. A response surface modelling design was performed to investigate the relationship between biodiesel yield and several critical factors, including enzyme concentration (5, 10, or 15%), temperature (40, 45, or 50 °C), oil/alcohol molar ratio (1:3, 1:4, or 1:5) and time (8, 16, or 24 h). The results indicated that the effects of all the factors were statistically significant at p-values of 0.000 for biodiesel production. The optimum parameters for biodiesel production were determined as 10% enzyme concentration, 45 °C, 16 h, and 1:4 oil/alcohol molar ratio, leading to a biodiesel yield of 87.23%. The step-wise addition of methanol during the enzymatic transesterification further increased the biodiesel yield to 94.5%. This is the first study that focused on Atlantic salmon oil-derived biodiesel production, which creates a paradigm for valorization of Atlantic salmon by-products that would also reduce the consumption and demand of plant oils derived from crops and vegetables.


2020 ◽  
Vol 71 (4) ◽  
pp. 375
Author(s):  
E. Gruczynska-Sekowska ◽  
F. Aladedunye ◽  
F. Anwar ◽  
P. Koczon ◽  
D. Kowalska ◽  
...  

Novel zero-trans frying shortenings were formed by enzymatic transesterification by exploring a palm stearin and canola oil mixture and stearic acid as substrates. Both immobilized (Novozym 435, Lipase PS “Amano” IM) and non-immobilized (Lipomod TM 34P) enzymes were applied as biocatalysts. Palmitic acid, the fatty acid which defines the proper type of crystal formation, was present at the 15% level in the reaction mixtures. The novel structured lipids had comparable physical properties and offered similar frying performance to those of commercial shortening. Needle-shaped crystals were predominant both in the transesterification products and the commercial frying shortening. Furthermore, solid fat content profiles of the zero-trans structured lipids produced by Novozym 435 and Lipase PS “Amano” IM were close to those of the commercial shortening.


Sign in / Sign up

Export Citation Format

Share Document