Structure-Preserving Joint Non-negative Tensor Factorization to Identify Reaction Pathways Using Bayesian Networks

Author(s):  
Anjana Puliyanda ◽  
Kaushik Sivaramakrishnan ◽  
Zukui Li ◽  
Arno de Klerk ◽  
Vinay Prasad
Author(s):  
Prachi Jain ◽  
Shikhar Murty ◽  
Mausam . ◽  
Soumen Chakrabarti

This paper analyzes the varied performance of Matrix Factorization (MF) on the related tasks of relation extraction and knowledge-base completion, which have been unified recently into a single framework of knowledge-base inference (KBI) [Toutanova et al., 2015]. We first propose a new evaluation protocol that makes comparisons between MF and Tensor Factorization (TF) models fair. We find that this results in a steep drop in MF performance. Our analysis attributes this to the high out-of-vocabulary (OOV) rate of entity pairs in test folds of commonly-used datasets. To alleviate this issue, we propose three extensions to MF. Our best model is a TF-augmented MF model. This hybrid model is robust and obtains strong results across various KBI datasets.


2019 ◽  
Author(s):  
Clare Bakewell ◽  
Martí Garçon ◽  
Richard Y Kong ◽  
Louisa O'Hare ◽  
Andrew J. P. White ◽  
...  

The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of 1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentene containing products. This mechanism has been interrogated by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloaddition includes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienes complementary reactivity is observed; the orthogonal nature of the C=C π-bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways are determined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C=C π-bond leading to complex organometallic products that incorporate fused hydrocarbon rings.


2018 ◽  
Author(s):  
Victor Laserna ◽  
Tom Sheppard

A versatile approach to the valorization of propargylic alcohols is reported, enabling controlled access to three different products from the same starting materials. Firstly, a general method for the hydroamination of propargylic alcohols with anilines is described using gold catalysis to give 3-hydroxy imines with complete regioselectivity. These 3-hydroxyimines can be reduced to give 1,3-aminoalcohols with high syn seletivity. Alternatively, by using a catalytic quantity of aniline, 3-hydroxyketones can be obtained in high yield directly from propargylic alcohols. Further manipulation of the reaction conditions enables the selective formation of 3-aminoketones via a rearrangement/hydroamination pathway.<br>


2009 ◽  
Vol 31 (10) ◽  
pp. 1814-1825 ◽  
Author(s):  
Dong LIU ◽  
Chun-Yuan ZHANG ◽  
Wei-Yan XING ◽  
Rui LI

2020 ◽  
Author(s):  
Sumit Sourabh ◽  
Markus Hofer ◽  
Drona Kandhai

Sign in / Sign up

Export Citation Format

Share Document