scholarly journals Quantum Mechanics/Molecular Mechanics Density Functional Theory Simulations of the Optical Properties Fingerprinting the Ligand-Binding of Pentameric Formyl Thiophene Acetic Acid in Amyloid-β(1–42)

2020 ◽  
Vol 124 (5) ◽  
pp. 875-888 ◽  
Author(s):  
Camilla Gustafsson ◽  
Mathieu Linares ◽  
Patrick Norman
2018 ◽  
Vol 9 (15) ◽  
pp. 3866-3880 ◽  
Author(s):  
Erik Donovan Hedegård ◽  
Ulf Ryde

The lytic polysaccharide monooxygenases (LPMOs) are copper metalloenzymes that can enhance polysaccharide depolymerization through an oxidative mechanism and hence boost generation of biofuel from e.g. cellulose. By employing density functional theory in a combination of quantum mechanics and molecular mechanics (QM/MM), we report a complete description of the molecular mechanism of LPMOs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rauf ◽  
Muhammad Adil ◽  
Shabeer Ahmad Mian ◽  
Gul Rahman ◽  
Ejaz Ahmed ◽  
...  

AbstractHematite (Fe2O3) is one of the best candidates for photoelectrochemical water splitting due to its abundance and suitable bandgap. However, its efficiency is mostly impeded due to the intrinsically low conductivity and poor light absorption. In this study, we targeted this intrinsic behavior to investigate the thermodynamic stability, photoconductivity and optical properties of rhodium doped hematite using density functional theory. The calculated formation energy of pristine and rhodium doped hematite was − 4.47 eV and − 5.34 eV respectively, suggesting that the doped material is thermodynamically more stable. The DFT results established that the bandgap of doped hematite narrowed down to the lower edge (1.61 eV) in the visible region which enhanced the optical absorption and photoconductivity of the material. Moreover, doped hematite has the ability to absorb a broad spectrum (250–800) nm. The enhanced optical absorption boosted the photocurrent and incident photon to current efficiency. The calculated results also showed that the incorporation of rhodium in hematite induced a redshift in optical properties.


2021 ◽  
pp. 413061
Author(s):  
Shahran Ahmed ◽  
Sadiq Shahriyar Nishat ◽  
Alamgir Kabir ◽  
A.K.M. Sarwar Hossain Faysal ◽  
Tarique Hasan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document