scholarly journals Light–Matter Coupling Strength Controlled by the Orientation of Organic Crystals in Plasmonic Cavities

2020 ◽  
Vol 124 (22) ◽  
pp. 12030-12038 ◽  
Author(s):  
Anton Matthijs Berghuis ◽  
Vincent Serpenti ◽  
Mohammad Ramezani ◽  
Shaojun Wang ◽  
Jaime Gómez Rivas
Nano Letters ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1320-1326
Author(s):  
Manuel Hertzog ◽  
Battulga Munkhbat ◽  
Denis Baranov ◽  
Timur Shegai ◽  
Karl Börjesson

Author(s):  
E. Knapek ◽  
H. Formanek ◽  
G. Lefranc ◽  
I. Dietrich

A few years ago results on cryoprotection of L-valine were reported, where the values of the critical fluence De i.e, the electron exposure which decreases the intensity of the diffraction reflections by a factor e, amounted to the order of 2000 + 1000 e/nm2. In the meantime a discrepancy arose, since several groups published De values between 100 e/nm2 and 1200 e/nm2 /1 - 4/. This disagreement and particularly the wide spread of the results induced us to investigate more thoroughly the behaviour of organic crystals at very low temperatures during electron irradiation.For this purpose large L-valine crystals with homogenuous thickness were deposited on holey carbon films, thin carbon films or Au-coated holey carbon films. These specimens were cooled down to nearly liquid helium temperature in an electron microscope with a superconducting lens system and irradiated with 200 keU-electrons. The progress of radiation damage under different preparation conditions has been observed with series of electron diffraction patterns and direct images of extinction contours.


Author(s):  
L. N. Demianets ◽  
G. A. Emelchenko ◽  
J. Hesse ◽  
N. Karl ◽  
A. N. Lobachev ◽  
...  
Keyword(s):  

Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this chapter we study with the tools developed in Chapter 3 the basic models that are the foundations of light–matter interaction. We start with Rabi dynamics, then consider the optical Bloch equations that add phenomenologically the lifetime of the populations. As decay and pumping are often important, we cover the Lindblad form, a correct, simple and powerful way to describe various dissipation mechanisms. Then we go to a full quantum picture, quantizing also the optical field. We first investigate the simpler coupling of bosons and then culminate with the Jaynes–Cummings model and its solution to the quantum interaction of a two-level system with a cavity mode. Finally, we investigate a broader family of models where the material excitation operators differ from the ideal limits of a Bose and a Fermi field.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Brian Kaufman ◽  
Tamás Rozgonyi ◽  
Philipp Marquetand ◽  
Thomas Weinacht

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Mustafa A. Amin ◽  
Andrew J. Long ◽  
Zong-Gang Mou ◽  
Paul M. Saffin

Abstract We investigate the production of photons from coherently oscillating, spatially localized clumps of axionic fields (oscillons and axion stars) in the presence of external electromagnetic fields. We delineate different qualitative behaviour of the photon luminosity in terms of an effective dimensionless coupling parameter constructed out of the axion-photon coupling, and field amplitude, oscillation frequency and radius of the axion star. For small values of this dimensionless coupling, we provide a general analytic formula for the dipole radiation field and the photon luminosity per solid angle, including a strong dependence on the radius of the configuration. For moderate to large coupling, we report on a non-monotonic behavior of the luminosity with the coupling strength in the presence of external magnetic fields. After an initial rise in luminosity with the coupling strength, we see a suppression (by an order of magnitude or more compared to the dipole radiation approximation) at moderately large coupling. At sufficiently large coupling, we find a transition to a regime of exponential growth of the luminosity due to parametric resonance. We carry out 3+1 dimensional lattice simulations of axion electrodynamics, at small and large coupling, including non-perturbative effects of parametric resonance as well as backreaction effects when necessary. We also discuss medium (plasma) effects that lead to resonant axion to photon conversion, relevance of the coherence of the soliton, and implications of our results in astrophysical and cosmological settings.


Sign in / Sign up

Export Citation Format

Share Document