Interpretation of irradiation-induced changes in electron diffractograms and images of extinction contours at low temperatures

Author(s):  
E. Knapek ◽  
H. Formanek ◽  
G. Lefranc ◽  
I. Dietrich

A few years ago results on cryoprotection of L-valine were reported, where the values of the critical fluence De i.e, the electron exposure which decreases the intensity of the diffraction reflections by a factor e, amounted to the order of 2000 + 1000 e/nm2. In the meantime a discrepancy arose, since several groups published De values between 100 e/nm2 and 1200 e/nm2 /1 - 4/. This disagreement and particularly the wide spread of the results induced us to investigate more thoroughly the behaviour of organic crystals at very low temperatures during electron irradiation.For this purpose large L-valine crystals with homogenuous thickness were deposited on holey carbon films, thin carbon films or Au-coated holey carbon films. These specimens were cooled down to nearly liquid helium temperature in an electron microscope with a superconducting lens system and irradiated with 200 keU-electrons. The progress of radiation damage under different preparation conditions has been observed with series of electron diffraction patterns and direct images of extinction contours.

Author(s):  
Kenneth H. Downing ◽  
Benjamin M. Siegel

Under the “weak phase object” approximation, the component of the electron wave scattered by an object is phase shifted by π/2 with respect to the unscattered component. This phase shift has been confirmed for thin carbon films by many experiments dealing with image contrast and the contrast transfer theory. There is also an additional phase shift which is a function of the atomic number of the scattering atom. This shift is negligible for light atoms such as carbon, but becomes significant for heavy atoms as used for stains for biological specimens. The light elements are imaged as phase objects, while those atoms scattering with a larger phase shift may be imaged as amplitude objects. There is a great deal of interest in determining the complete object wave, i.e., both the phase and amplitude components of the electron wave leaving the object.


Author(s):  
R. Stevenson

A study has been made of the morphology and crystallography of particulate emissions from indirect injection diesel engines. This particulate matter consists substantially of carbon (although hydrocarbons can be extracted with solvents). Samples were collected in a diluted exhaust stream on amorphous carbon films and examined in a JEM-200C electron microscope operated in the TEM mode with an accelerating voltage of 200 KV.The morphology of the diesel particles, as shown in Fig. 1, markedly resembles carbon blacks and consists of an agglomeration of quasispherical subunits arranged in chains or clusters. Only limited changes in morphology were observed as the number of subunits in the particle increased (although larger particles tended to be more cluster-like than the extended chain shown in Fig. 1). However, a dramatic effect of the number of subunits was observed on the character of the diffraction pattern. Smaller particles yielded a diffraction pattern consisting of very diffuse rings typical of turbostratic carbon; the diffraction patterns from the larger particles, however, although qualitatively similar, exhibited much sharper and less diffuse ring patterns.


Author(s):  
F. Ouyang ◽  
D. A. Ray ◽  
O. L. Krivanek

Electron backscattering Kikuchi diffraction patterns (BKDP) reveal useful information about the structure and orientation of crystals under study. With the well focused electron beam in a scanning electron microscope (SEM), one can use BKDP as a microanalysis tool. BKDPs have been recorded in SEMs using a phosphor screen coupled to an intensified TV camera through a lens system, and by photographic negatives. With the development of fiber-optically coupled slow scan CCD (SSC) cameras for electron beam imaging, one can take advantage of their high sensitivity and wide dynamic range for observing BKDP in SEM.We have used the Gatan 690 SSC camera to observe backscattering patterns in a JEOL JSM-840A SEM. The CCD sensor has an active area of 13.25 mm × 8.83 mm and 576 × 384 pixels. The camera head, which consists of a single crystal YAG scintillator fiber optically coupled to the CCD chip, is located inside the SEM specimen chamber. The whole camera head is cooled to about -30°C by a Peltier cooler, which permits long integration times (up to 100 seconds).


Author(s):  
M. K. Lamvik

When observing small objects such as cellular organelles by scanning electron microscopy, it is often valuable to use the techniques of transmission electron microscopy. The common practice of mounting and coating for SEM may not always be necessary. These possibilities are illustrated using vertebrate skeletal muscle myofibrils.Micrographs for this study were made using a Hitachi HFS-2 scanning electron microscope, with photographic recording usually done at 60 seconds per frame. The instrument was operated at 25 kV, with a specimen chamber vacuum usually better than 10-7 torr. Myofibrils were obtained from rabbit back muscle using the method of Zak et al. To show the component filaments of this contractile organelle, the myofibrils were partially disrupted by agitation in a relaxing medium. A brief centrifugation was done to clear the solution of most of the undisrupted myofibrils before a drop was placed on the grid. Standard 3 mm transmission electron microscope grids covered with thin carbon films were used in this study.


Author(s):  
E.A. Kenik ◽  
T.A. Zagula ◽  
M.K. Miller ◽  
J. Bentley

The state of long-range order (LRO) and short-range order (SRO) in Ni4Mo has been a topic of interest for a considerable time (see Brooks et al.). The SRO is often referred to as 1½0 order from the apparent position of the diffuse maxima in diffraction patterns, which differs from the positions of the LRO (D1a) structure. Various studies have shown that a fully disordered state cannot be retained by quenching, as the atomic arrangements responsible for the 1½0 maxima are present at temperatures above the critical ordering temperature for LRO. Over 20 studies have attempted to identify the atomic arrangements associated with this state of order. A variety of models have been proposed, but no consensus has been reached. It has also been shown that 1 MeV electron irradiation at low temperatures (∼100 K) can produce the disordered phase in Ni4Mo. Transmission electron microscopy (TEM), atom probe field ion microscopy (APFIM), and electron irradiation disordering have been applied in the current study to further the understanding of the ordering processes in Ni4Mo.


Author(s):  
Jaap Brink ◽  
Wah Chiu

The crotoxin complex is a potent neurotoxin composed of a basic subunit (Mr = 12,000) and an acidic subunit (M = 10,000). The basic subunit possesses phospholipase activity whereas the acidic subunit shows no enzymatic activity at all. The complex's toxocity is expressed both pre- and post-synaptically. The crotoxin complex forms thin crystals suitable for electron crystallography. The crystals diffract up to 0.16 nm in the microscope, whereas images show reflections out to 0.39 nm2. Ultimate goal in this study is to obtain a three-dimensional (3D-) structure map of the protein around 0.3 nm resolution. Use of 100 keV electrons in this is limited; the unit cell's height c of 25.6 nm causes problems associated with multiple scattering, radiation damage, limited depth of field and a more pronounced Ewald sphere curvature. In general, they lead to projections of the unit cell, which at the desired resolution, cannot be interpreted following the weak-phase approximation. Circumventing this problem is possible through the use of 400 keV electrons. Although the overall contrast is lowered due to a smaller scattering cross-section, the signal-to-noise ratio of especially higher order reflections will improve due to a smaller contribution of inelastic scattering. We report here our preliminary results demonstrating the feasability of the data collection procedure at 400 kV.Crystals of crotoxin complex were prepared on carbon-covered holey-carbon films, quench frozen in liquid ethane, inserted into a Gatan 626 holder, transferred into a JEOL 4000EX electron microscope equipped with a pair of anticontaminators operating at −184°C and examined under low-dose conditions. Selected area electron diffraction patterns (EDP's) and images of the crystals were recorded at 400 kV and −167°C with dose levels of 5 and 9.5 electrons/Å, respectively.


2016 ◽  
Vol 19 (3) ◽  
pp. 669-672 ◽  
Author(s):  
Danilo Lopes Costa e Silva ◽  
Luciana Reyes Pires Kassab ◽  
Jose Roberto Martinelli ◽  
Antonio Domingues dos Santos ◽  
Sidney José Lima Ribeiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document