scholarly journals Probing the Electronic Structure of Bulk Water at the Molecular Length Scale with Angle-Resolved Photoelectron Spectroscopy

2020 ◽  
Vol 11 (13) ◽  
pp. 5162-5170 ◽  
Author(s):  
Samer Gozem ◽  
Robert Seidel ◽  
Uwe Hergenhahn ◽  
Evgeny Lugovoy ◽  
Bernd Abel ◽  
...  
2020 ◽  
Author(s):  
Samer Gozem ◽  
Robert Seidel ◽  
Uwe Hergenhahn ◽  
Evgeny Lugovoy ◽  
Bernd Abel ◽  
...  

<div>We report a combined experimental and theoretical study of bulk water photoionization. Angular distributions of photoelectrons produced by ionizing the valence band of neat water using X-ray radiation (250-750 eV) show a limited (<30 %) decrease in the beta anisotropy parameter compared to the gas phase, indicating that the electronic structure of the individual water molecules can be probed. By theoretical modeling using high-level electronic structure methods, we show that in a high-energy regime photoionization of bulk can be described as an incoherent superposition of individual molecules, in contrast to a low-energy regime where photoionization probes delocalized entangled states of molecular aggregates. The two regimes-low energy versus high energy-are defined as limiting cases where the de Broglie wavelength of the photoelectron is either larger or smaller than the intermolecular distance between water molecules, respectively. The comparison of the measured and computed anisotropies reveals that at high kinetic energies the observed reduction in beta is mostly due to scattering rather than rehybridization due to solvation.</div>


2020 ◽  
Author(s):  
Samer Gozem ◽  
Robert Seidel ◽  
Uwe Hergenhahn ◽  
Evgeny Lugovoy ◽  
Bernd Winter ◽  
...  

<div>We report a combined experimental and theoretical study of bulk water photoionization. Angular distributions of photoelectrons produced by ionizing the valence band of neat water using X-ray radiation (250-750 eV) show a limited (<30 %) decrease in the beta anisotropy parameter compared to the gas phase, indicating that the electronic structure of the individual water molecules can be probed. By theoretical modeling using high-level electronic structure methods, we show that in a high-energy regime photoionization of bulk can be described as an incoherent superposition of individual molecules, in contrast to a low-energy regime where photoionization probes delocalized entangled states of molecular aggregates. The two regimes-low energy versus high energy-are defined as limiting cases where the de Broglie wavelength of the photoelectron is either larger or smaller than the intermolecular distance between water molecules, respectively.</div>


2014 ◽  
Vol 118 (42) ◽  
pp. 24479-24489 ◽  
Author(s):  
J. Brandon McClimon ◽  
Ehsan Monazami ◽  
Petra Reinke

2020 ◽  
Author(s):  
Samer Gozem ◽  
Robert Seidel ◽  
Uwe Hergenhahn ◽  
Evgeny Lugovoy ◽  
Bernd Abel ◽  
...  

<div>We report a combined experimental and theoretical study of bulk water photoionization. Angular distributions of photoelectrons produced by ionizing the valence band of neat water using X-ray radiation (250-750 eV) show a limited (<30 %) decrease in the beta anisotropy parameter compared to the gas phase, indicating that the electronic structure of the individual water molecules can be probed. By theoretical modeling using high-level electronic structure methods, we show that in a high-energy regime photoionization of bulk can be described as an incoherent superposition of individual molecules, in contrast to a low-energy regime where photoionization probes delocalized entangled states of molecular aggregates. The two regimes-low energy versus high energy-are defined as limiting cases where the de Broglie wavelength of the photoelectron is either larger or smaller than the intermolecular distance between water molecules, respectively. The comparison of the measured and computed anisotropies reveals that at high kinetic energies the observed reduction in beta is mostly due to scattering rather than rehybridization due to solvation.</div>


2004 ◽  
Vol 70 (20) ◽  
Author(s):  
T. Durakiewicz ◽  
J. J. Joyce ◽  
G. H. Lander ◽  
C. G. Olson ◽  
M. T. Butterfield ◽  
...  

2000 ◽  
Vol 447 (1-3) ◽  
pp. 112-116 ◽  
Author(s):  
I.N. Shabanova ◽  
V.I. Kormilets ◽  
L.D. Zagrebin ◽  
N.S. Terebova

1988 ◽  
Vol 99 (1-2) ◽  
pp. 317-320 ◽  
Author(s):  
R. Zehringer ◽  
P. Oelhafen ◽  
H.-J. Güntherodt ◽  
Y. Yamada ◽  
U. Mizutani

2011 ◽  
Vol 115 (23) ◽  
pp. 6239-6249 ◽  
Author(s):  
Stephan Thürmer ◽  
Robert Seidel ◽  
Bernd Winter ◽  
Milan Ončák ◽  
Petr Slavíček

Sign in / Sign up

Export Citation Format

Share Document