molecular length
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 28)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jacopo Perego ◽  
Charl Bezuidenhout ◽  
Irene Villa ◽  
Francesca Cova ◽  
Roberta Crapanzano ◽  
...  

A high efficiency emission with a massive Stokes shift is obtained by fluorescent conjugated acene building blocks arranged in nanocrystals. The two ligands of equal molecular length and connectivity, yet complementary electronic properties, are co-assembled by zirconium oxy-hydroxy clusters, generating highly crystalline hetero-MOF nanoparticles The fast diffusion of singlet molecular excitons in the framework, coupled with the fine matching of ligands absorption and emission properties, enables to achieve an ultrafast activation of the low energy emission by diffusion-mediated non-radiative energy transfer in the 100 ps time scale, by using a low amount of co-ligands. This allow to obtain MOF nanocrystals with a fluorescence quantum efficiency of ̴ 70% and an actual Stokes shift as large as 750 meV. This large Stokes shift suppresses the reabsorption of fast emission issues in bulk devices, pivotal for a plethora of applications in photonics and photon managing spacing from solar technologies, imaging, and detection of high energy radiation. These features allowed to realize a prototypal fast nanocomposite scintillator that shows an enhanced performance with respect to the homo-ligand nanocrystals, achieving benchmark. values which compete with those of some inorganic and organic commercial systems.


2021 ◽  
Vol 11 (24) ◽  
pp. 11827
Author(s):  
Elliott R. Brown ◽  
Edgar A. Mendoza

We report on the room-temperature experimental measurement of THz absorption signatures in aqueous, double-stranded nucleic acid solutions confined to the submicron silica channels on fused quartz substrates using THz frequency-domain (photomixing) spectroscopy. Three sharp (i.e., strong and narrow) signatures, ~10–20 GHz FWHM, are observed in the shortest base pair sample—small interfering, double-stranded (ds) RNA—in the range of 800 GHz to 1.1 THz. Three similar signatures are also observed in a 50-bp dsDNA ladder sample. For a 1-kbp dsDNA ladder sample, the three are still evident, but are broadened and weakened. For a 48.5-kbp sample (λ-DNA), no prominent signatures are observed, but rather a quasi-sinusoidal transmittance spectrum consistent with a substrate etalon effect. The division between sharp signatures and no signatures is consistent with the molecular length being shorter or longer than the persistence length.


2021 ◽  
Vol 118 (46) ◽  
pp. e2105530118
Author(s):  
Kevin Roger ◽  
Jérôme J. Crassous

Bringing an aqueous dispersion or solution into open air leads to water evaporation. The resulting drying process initiates the buildup of spatial heterogeneities, as nonvolatile solutes and colloids concentrate. Such composition gradients associate with mesostructure gradients, which, in turn, impact flows within these multicomponent systems. In this work, we investigate the drying of microgel dispersions in respect to two reference systems, a colloidal dispersion and a polymer solution, which, respectively, involve colloidal and molecular length scales. We evidence an intermediate behavior in which a film forms at the air/liquid interface and is clearly separated from bulk by a sharp drying front. However, complex composition and mesostructure gradients develop throughout the drying film, as evidenced by Raman and small-angle X-ray scattering mapping. We show that this results from the soft colloidal structure of microgel, which allows them to interpenetrate, deform, and deswell. As a result, water activity and water transport are drastically decreased in the vicinity of the air/liquid interface. This notably leads to diffusional drying kinetics that are nearly independent on the air relative humidity. The interplay between water fraction, water activity, and mesostructure on water transport is generic and, thus, shown to be pivotal in order to master evaporation in drying complex fluids.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022007
Author(s):  
Zhiqiang Zhang ◽  
Wenlin Wang ◽  
Cheng Feng ◽  
Peng He ◽  
Jingcheng Yang ◽  
...  

Abstract Aiming at the aging problem of insulating silicone rubber for new energy vehicles, this paper studies the equations of the aging of silicone rubber and its dielectric properties based on first-principles calculations. First, through the analysis of the microscopic mechanism of silicone rubber aging, the equations of the aging of silicone rubber and the rupture of the molecular main chain is obtained. Then the equations of silicone rubber molecular length and dielectric constant are solved by density functional theory. Ultimate, a molecular chain scission model of silicone rubber was built, and the micro-dielectric relationship was extended to the macroscopic level. The equation of the norm molecular length of silicone rubber and the dielectric constant is obtained. It provides an important theoretical basis for the aging detection of insulating silicone rubber for new energy vehicles based on electromagnetic waves.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takanori Harashima ◽  
Shintaro Fujii ◽  
Yuki Jono ◽  
Tsuyoshi Terakawa ◽  
Noriyuki Kurita ◽  
...  

AbstractThe electrical properties of DNA have been extensively investigated within the field of molecular electronics. Previous studies on this topic primarily focused on the transport phenomena in the static structure at thermodynamic equilibria. Consequently, the properties of higher-order structures of DNA and their structural changes associated with the design of single-molecule electronic devices have not been fully studied so far. This stems from the limitation that only extremely short DNA is available for electrical measurements, since the single-molecule conductance decreases sharply with the increase in the molecular length. Here, we report a DNA zipper configuration to form a single-molecule junction. The duplex is accommodated in a nanogap between metal electrodes in a configuration where the duplex is perpendicular to the nanogap axis. Electrical measurements reveal that the single-molecule junction of the 90-mer DNA zipper exhibits high conductance due to the delocalized π system. Moreover, we find an attractive self-restoring capability that the single-molecule junction can be repeatedly formed without full structural breakdown even after electrical failure. The DNA zipping strategy presented here provides a basis for novel designs of single-molecule junctions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. H. Vogt ◽  
U. Bender ◽  
B. Deibel ◽  
F. Kiesewetter ◽  
J. Zimmer ◽  
...  

AbstractGenomic AZFb deletions in Yq11 coined “classical” (i.e. length of Y DNA deletion: 6.23 Mb) are associated with meiotic arrest (MA) of patient spermatogenesis, i.e., absence of any postmeiotic germ cells. These AZFb deletions are caused by non-allelic homologous recombination (NAHR) events between identical sequence blocks located in the proximal arm of the P5 palindrome and within P1.2, a 92 kb long sequence block located in the P1 palindrome structure of AZFc in Yq11. This large genomic Y region includes deletion of 6 protein encoding Y genes, EIFA1Y, HSFY, PRY, RBMY1, RPS4Y, SMCY. Additionally, one copy of CDY2 and XKRY located in the proximal P5 palindrome and one copy of BPY1, two copies of DAZ located in the P2 palindrome, and one copy of CDY1 located proximal to P1.2 are included within this AZFb microdeletion. It overlaps thus distally along 2.3 Mb with the proximal part of the genomic AZFc deletion. However, AZFb deletions have been also reported with distinct break sites in the proximal and/or distal AZFb breakpoint intervals on the Y chromosome of infertile men. These so called “non-classical” AZFb deletions are associated with variable testicular pathologies, including meiotic arrest, cryptozoospermia, severe oligozoospermia, or oligoasthenoteratozoospermia (OAT syndrome), respectively. This raised the question whether there are any specific length(s) of the AZFb deletion interval along Yq11 required to cause meiotic arrest of the patient’s spermatogenesis, respectively, whether there is any single AZFb Y gene deletion also able to cause this “classical” AZFb testicular pathology? Review of the literature and more cases with “classical” and “non-classical” AZFb deletions analysed in our lab since the last 20 years suggests that the composition of the genomic Y sequence in AZFb is variable in men with distinct Y haplogroups especially in the distal AZFb region overlapping with the proximal AZFc deletion interval and that its extension can be “polymorphic” in the P3 palindrome. That means this AZFb subinterval can be rearranged or deleted also on the Y chromosome of fertile men. Any AZFb deletion observed in infertile men with azoospermia should therefore be confirmed as “de novo” mutation event, i.e., not present on the Y chromosome of the patient’s father or fertile brother before it is considered as causative agent for man’s infertility. Moreover, its molecular length in Yq11 should be comparable to that of the “classical” AZFb deletion, before meiotic arrest is prognosed as the patient’s testicular pathology.


2021 ◽  
Vol 12 (7) ◽  
pp. 1869-1875
Author(s):  
Yangyang Han ◽  
Junbo Wang ◽  
Luying Song ◽  
Yuanjing Zheng ◽  
Youyong Li ◽  
...  

2021 ◽  
Vol 18 ◽  
Author(s):  
Wan-Sinn Yam ◽  
Yit-Peng Goh ◽  
Foo-Win Yip ◽  
Gurumurthy Hegde

Introduction: This is the first report on chiral polymorphic hydrazine-based asymmetric liquid crystal trimers, 1-[4'-(4''- (5-Cholesteryloxy)carbonyl)butyloxy]-3-[N-benzylideneoxy-N'-(4'''-decyloxybenzylidene)hydrazine] butyloxybenzenes, and 1-[4'-(4''-(10-cholesteryloxy)carbonyl)nonyloxy]-3-[N-benzylideneoxy-N'-(4'''- decyloxybenzylidene)hydrazine]butyloxybenzenes., in which the hydrazine and cholesterol arms were connected via two flexible methylene spacers (n = 3-12 units and m = 4 or 9, respectively) to the central resorcinol core. Materials and Methods: FT-IR, 1D and 2D NMR spectroscopy, and CHN microanalysis were used to elucidate the structures of the trimers. Differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction were used to study the transitional and phase properties of the trimers, of which they were length and spacer parity dependent. Trimers with short spacer length in the cholesteryl arm, m = 4 showed interesting phase sequence of BP/N*-TGBA*-SmA*. Results and discussion: The TGBA∗ phase was sensitive to spacer length as it was only observed in trimers with short ester linkage. For the long analogues, m = 9, characteristic visible reflection and a much simpler phase sequence with only N* and SmA* phases were seen. Conclusion: The X-ray diffraction measurements revealed that layer periodicities of the SmA* phase were approximately half the estimated all-trans molecular length (d/L ≈ 0.44-0.52), thus suggesting that the molecules are either strongly intercalated or bent.


2021 ◽  
Author(s):  
Phatsawit Wuamprakhon ◽  
Ruttiyakorn Donthongkwa ◽  
Kanit Hantanasirisakul ◽  
Vinich Promarak ◽  
Jumras Limtrakul ◽  
...  

The specific cell capacitance, equivalent series resistance (ESR) and equivalent distributed resistance (EDR) of porous carbon-based supercapacitors linearly depend on the cation molecular length (1 dimension) of room-temperature ionic liquids.


Sign in / Sign up

Export Citation Format

Share Document