Elucidating Proton Involvement in the Rate-Determining Step for Pt/Pd-Based and Non-Precious-Metal Oxygen Reduction Reaction Catalysts Using the Kinetic Isotope Effect

2016 ◽  
Vol 7 (18) ◽  
pp. 3542-3547 ◽  
Author(s):  
Edmund C. M. Tse ◽  
Jason A. Varnell ◽  
Thao T. H. Hoang ◽  
Andrew A. Gewirth
ChemPhysChem ◽  
2020 ◽  
Vol 21 (12) ◽  
pp. 1331-1339 ◽  
Author(s):  
Morteza Rezaei Talarposhti ◽  
Tristan Asset ◽  
Samuel T. Garcia ◽  
Yechuan Chen ◽  
Sergio Herrera ◽  
...  

2021 ◽  
Author(s):  
Suojiang Zhang ◽  
jiayao Cui ◽  
Qingjun Chen ◽  
Xiaojin Li

The high cost and limited supply of platinum has driven intensive research into the use of non-platinum group metal (PGM-free) as cathode oxygen reduction reaction (ORR) catalysts for proton exchange...


1993 ◽  
Vol 290 (1) ◽  
pp. 103-107 ◽  
Author(s):  
O Smékal ◽  
M Yasin ◽  
C A Fewson ◽  
G A Reid ◽  
S K Chapman

L-Lactate dehydrogenase (L-LDH) from Saccharomyces cerevisiae and L-mandelate dehydrogenase (L-MDH) from Rhodotorula graminis are both flavocytochromes b2. The kinetic properties of these enzymes have been compared using steady-state kinetic methods. The most striking difference between the two enzymes is found by comparing their substrate specificities. L-LDH and L-MDH have mutually exclusive primary substrates, i.e. the substrate for one enzyme is a potent competitive inhibitor for the other. Molecular-modelling studies on the known three-dimensional structure of S. cerevisiae L-LDH suggest that this enzyme is unable to catalyse the oxidation of L-mandelate because productive binding is impeded by steric interference, particularly between the side chain of Leu-230 and the phenyl ring of mandelate. Another major difference between L-LDH and L-MDH lies in the rate-determining step. For S. cerevisiae L-LDH, the major rate-determining step is proton abstraction at C-2 of lactate, as previously shown by the 2H kinetic-isotope effect. However, in R. graminis L-MDH the kinetic-isotope effect seen with DL-[2-2H]mandelate is only 1.1 +/- 0.1, clearly showing that proton abstraction at C-2 of mandelate is not rate-limiting. The fact that the rate-determining step is different indicates that the transition states in each of these enzymes must also be different.


Sign in / Sign up

Export Citation Format

Share Document